9 research outputs found

    Inhibition of Inducible Nitric Oxide Synthase Expression by a Novel Small Molecule Activator of the Unfolded Protein Response

    Get PDF
    The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2α and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions

    KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo

    Get PDF
    Abstract Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn 2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An A-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC 50 of 0.045 Mmol/L in the screening biochemical assay and an EC 50 of 0.025 Mmol/L in HeLa cell -based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classe

    Repeated exposure of house dust mite induces progressive airway inflammation in mice: Differential roles of CCL17 and IL‐13

    No full text
    Abstract We conducted a systematic evaluation of lung inflammation indued by repeated intranasal exposure (for 10 consecutive days) to a human aeroallergen, house dust mite (HDM) in BALB/c mice. Peak influx of neutrophils, monocytes/lymphocytes, and eosinophils was observed in bronchoalveolar lavage (BAL) on days 1, 7 and 11, respectively, and normalized to baseline by day 21. Peak elevations of Th2, myeloid‐derived cytokines/chemokines and serum IgE were seen both in BAL and lung tissue homogenates between days 7 and 11, and declined thereafter; however, IL‐33 levels remained elevated from day 7 to day 21. Airway hyperreactivity to inhaled methacholine was significantly increased by day 11 and decreased to baseline by day 21. The lung tissue showed perivascular and peribronchial cuffing, epithelial hypertrophy and hyperplasia and goblet cell formation in airways by day 11, and resolution by day 21. Levels of soluble collagen and tissue inhibitors of metalloproteinases (TIMP) also increased reflecting tissue remodeling in the lung. Microarray analysis demonstrated a significant time‐dependent up‐regulation of several genes including IL‐33, CLCA3, CCL17, CD4, CD10, CD27, IL‐13, Foxa3, IL‐4, IL‐10, and CD19, in BAL cells as well as the lung. Pre‐treatment of HDM challenged mice with CCL17 and IL‐13 antibodies reduced BAL cellularity, airway hyper‐responsiveness (AHR), and histopathological changes. Notably, anti‐IL‐13, but not anti‐CCL17 monoclonal antibodies (mAbs) reduced BAL neutrophilia while both mAbs attenuated eosinophilia. These results suggest that CCL17 has an overlapping, yet distinct profile versus IL‐13 in the HDM model of pulmonary inflammation and potential for CCL17‐based therapeutics in treating Th2 inflammation
    corecore