484 research outputs found

    Hyperon Nonleptonic Weak Decays Revisited

    Full text link
    We first review the current algebra - PCAC approach to nonleptonic octet baryon 14 weak decay B (\to) (B^{\prime})(\pi) amplitudes. The needed four parameters are independently determined by (\Omega \to \Xi \pi),(\Lambda K) and (\Xi ^{-}\to \Sigma ^{-}\gamma) weak decays in dispersion theory tree order. We also summarize the recent chiral perturbation theory (ChPT) version of the eight independent B (\to) (B^{\prime}\pi) weak (\Delta I) = 1/2 amplitudes containing considerably more than eight low-energy weak constants in one-loop order.Comment: 10 pages, RevTe

    Mirror matter admixtures and isospin breaking in the \Delta I=1/2 rule in \Omega^- two body non-leptonic decays

    Full text link
    We discuss a description of \Omega^- two body non-leptonic decays based on possible, albeit tiny, admixtures of mirror matter in ordinary hadrons. The \Delta I=1/2 rule enhancement is obtained as a result of isospin symmetry and, more importantly, the rather large observed deviations from this rule result from small isospin breaking. This analysis lends support to the possibility that the enhancement phenomenon observed in low energy weak interactions may be systematically described by mirror matter admixtures in ordinary hadrons.Comment: Changed conten

    Learning about knowledge: A complex network approach

    Full text link
    This article describes an approach to modeling knowledge acquisition in terms of walks along complex networks. Each subset of knowledge is represented as a node, and relations between such knowledge are expressed as edges. Two types of edges are considered, corresponding to free and conditional transitions. The latter case implies that a node can only be reached after visiting previously a set of nodes (the required conditions). The process of knowledge acquisition can then be simulated by considering the number of nodes visited as a single agent moves along the network, starting from its lowest layer. It is shown that hierarchical networks, i.e. networks composed of successive interconnected layers, arise naturally as a consequence of compositions of the prerequisite relationships between the nodes. In order to avoid deadlocks, i.e. unreachable nodes, the subnetwork in each layer is assumed to be a connected component. Several configurations of such hierarchical knowledge networks are simulated and the performance of the moving agent quantified in terms of the percentage of visited nodes after each movement. The Barab\'asi-Albert and random models are considered for the layer and interconnecting subnetworks. Although all subnetworks in each realization have the same number of nodes, several interconnectivities, defined by the average node degree of the interconnection networks, have been considered. Two visiting strategies are investigated: random choice among the existing edges and preferential choice to so far untracked edges. A series of interesting results are obtained, including the identification of a series of plateaux of knowledge stagnation in the case of the preferential movements strategy in presence of conditional edges.Comment: 18 pages, 19 figure

    Distinguished non-Archimedean representations

    Full text link
    For a symmetric space (G,H), one is interested in understanding the vector space of H-invariant linear forms on a representation \pi of G. In particular an important question is whether or not the dimension of this space is bounded by one. We cover the known results for the pair (G=R_{E/F}GL(n),H=GL(n)), and then discuss the corresponding SL(n) case. In this paper, we show that (G=R_{E/F}SL(n),H=SL(n)) is a Gelfand pair when n is odd. When nn is even, the space of H-invariant forms on \pi can have dimension more than one even when \pi is supercuspidal. The latter work is joint with Dipendra Prasad

    Roughness of Sandpile Surfaces

    Full text link
    We study the surface roughness of prototype models displaying self-organized criticality (SOC) and their noncritical variants in one dimension. For SOC systems, we find that two seemingly equivalent definitions of surface roughness yields different asymptotic scaling exponents. Using approximate analytical arguments and extensive numerical studies we conclude that this ambiguity is due to the special scaling properties of the nonlinear steady state surface. We also find that there is no such ambiguity for non-SOC models, although there may be intermediate crossovers to different roughness values. Such crossovers need to be distinguished from the true asymptotic behaviour, as in the case of a noncritical disordered sandpile model studied in [10].Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.

    Giant strongly connected component of directed networks

    Full text link
    We describe how to calculate the sizes of all giant connected components of a directed graph, including the {\em strongly} connected one. Just to the class of directed networks, in particular, belongs the World Wide Web. The results are obtained for graphs with statistically uncorrelated vertices and an arbitrary joint in,out-degree distribution P(ki,ko)P(k_i,k_o). We show that if P(ki,ko)P(k_i,k_o) does not factorize, the relative size of the giant strongly connected component deviates from the product of the relative sizes of the giant in- and out-components. The calculations of the relative sizes of all the giant components are demonstrated using the simplest examples. We explain that the giant strongly connected component may be less resilient to random damage than the giant weakly connected one.Comment: 4 pages revtex, 4 figure

    Sandpile Model with Activity Inhibition

    Full text link
    A new sandpile model is studied in which bonds of the system are inhibited for activity after a certain number of transmission of grains. This condition impels an unstable sand column to distribute grains only to those neighbours which have toppled less than m times. In this non-Abelian model grains effectively move faster than the ordinary diffusion (super-diffusion). A novel system size dependent cross-over from Abelian sandpile behaviour to a new critical behaviour is observed for all values of the parameter m.Comment: 11 pages, RevTex, 5 Postscript figure

    Parity Violation in gamma proton Compton Scattering

    Full text link
    A measurement of parity-violating spin-dependent gamma proton Compton scattering will provide a theoretically clean determination of the parity-violating pion-nucleon coupling constant hπNN(1)h_{\pi NN}^{(1)}. We calculate the leading parity-violating amplitude arising from one-loop pion graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde

    Theoretical approach and impact of correlations on the critical packet generation rate in traffic dynamics on complex networks

    Full text link
    Using the formalism of the biased random walk in random uncorrelated networks with arbitrary degree distributions, we develop theoretical approach to the critical packet generation rate in traffic based on routing strategy with local information. We explain microscopic origins of the transition from the flow to the jammed phase and discuss how the node neighbourhood topology affects the transport capacity in uncorrelated and correlated networks.Comment: 6 pages, 5 figure

    Measurement report: In situ observations of deep convection without lightning during the tropical cyclone Florence 2018

    Get PDF
    Hurricane Florence was the sixth named storm in the Atlantic hurricane season 2018. It caused dozens of deaths and major economic damage. In this study, we present in situ observations of trace gases within tropical storm Florence on 2 September 2018, after it had developed a rotating nature, and of a tropical wave observed close to the African continent on 29 August 2018 as part of the research campaign CAFE Africa (Chemistry of the Atmosphere: Field Experiment in Africa) with HALO (High Altitude and LOng Range Research Aircraft). We show the impact of deep convection on atmospheric composition by measurements of the trace gases nitric oxide (NO), ozone (O3_{3}), carbon monoxide (CO), hydrogen peroxide (H2_{2}O2_{2}), dimethyl sulfide (DMS) and methyl iodide (CH3_{3}I) and by the help of color-enhanced infrared satellite imagery taken by GOES-16. While both systems, i.e., the tropical wave and the tropical storm, are deeply convective, we only find evidence for lightning in the tropical wave using both in situ NO measurements and data from the World Wide Lightning Location Network (WWLLN)
    corecore