434 research outputs found

    Hyperon Nonleptonic Weak Decays Revisited

    Full text link
    We first review the current algebra - PCAC approach to nonleptonic octet baryon 14 weak decay B (\to) (B^{\prime})(\pi) amplitudes. The needed four parameters are independently determined by (\Omega \to \Xi \pi),(\Lambda K) and (\Xi ^{-}\to \Sigma ^{-}\gamma) weak decays in dispersion theory tree order. We also summarize the recent chiral perturbation theory (ChPT) version of the eight independent B (\to) (B^{\prime}\pi) weak (\Delta I) = 1/2 amplitudes containing considerably more than eight low-energy weak constants in one-loop order.Comment: 10 pages, RevTe

    Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    Full text link
    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong Coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with it ab initio} electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.Comment: Accepted for publication in Proc. Natl. Acad. Sci. US

    Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Get PDF
    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10–fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated

    The Multidimensional Study of Viral Campaigns as Branching Processes

    Full text link
    Viral campaigns on the Internet may follow variety of models, depending on the content, incentives, personal attitudes of sender and recipient to the content and other factors. Due to the fact that the knowledge of the campaign specifics is essential for the campaign managers, researchers are constantly evaluating models and real-world data. The goal of this article is to present the new knowledge obtained from studying two viral campaigns that took place in a virtual world which followed the branching process. The results show that it is possible to reduce the time needed to estimate the model parameters of the campaign and, moreover, some important aspects of time-generations relationship are presented.Comment: In proceedings of the 4th International Conference on Social Informatics, SocInfo 201

    Multistage Random Growing Small-World Networks with Power-law degree Distribution

    Full text link
    In this paper, a simply rule that generates scale-free networks with very large clustering coefficient and very small average distance is presented. These networks are called {\bf Multistage Random Growing Networks}(MRGN) as the adding process of a new node to the network is composed of two stages. The analytic results of power-law exponent γ=3\gamma=3 and clustering coefficient C=0.81C=0.81 are obtained, which agree with the simulation results approximately. In addition, the average distance of the networks increases logarithmical with the number of the network vertices is proved analytically. Since many real-life networks are both scale-free and small-world networks, MRGN may perform well in mimicking reality.Comment: 3 figures, 4 page

    An Exactly Solvable Anisotropic Directed Percolation Model in Three Dimensions

    Get PDF
    We solve exactly a special case of the anisotropic directed bond percolation problem in three dimensions, in which the occupation probability is 1 along two spatial directions, by mapping it to a five-vertex model. We determine the asymptotic shape of the ininite cluster and hence the direction dependent critical probability. The exponents characterising the fluctuations of the boundary of the wetted cluster in d-dimensions are related to those of the (d-2)-dimensional KPZ equation.Comment: 4 pages, RevTex, 4 figures. 1 reference added, minor change

    Local minimal energy landscapes in river networks

    Full text link
    The existence and stability of the universality class associated to local minimal energy landscapes is investigated. Using extensive numerical simulations, we first study the dependence on a parameter γ\gamma of a partial differential equation which was proposed to describe the evolution of a rugged landscape toward a local minimum of the dissipated energy. We then compare the results with those obtained by an evolution scheme based on a variational principle (the optimal channel networks). It is found that both models yield qualitatively similar river patterns and similar dependence on γ\gamma. The aggregation mechanism is however strongly dependent on the value of γ\gamma. A careful analysis suggests that scaling behaviors may weakly depend both on γ\gamma and on initial condition, but in all cases it is within observational data predictions. Consequences of our resultsComment: 12 pages, 13 figures, revtex+epsfig style, to appear in Phys. Rev. E (Nov. 2000

    Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems

    Full text link
    In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly discussed the existence and nature of ferroelectric order in positionally disordered dipolar materials. Here we report further results and give a complete description of our work. Simulations of randomly frozen and dynamically disordered dipolar soft spheres are used to study ferroelectric ordering in non-crystalline systems. We also give a physical interpretation of the simulation results in terms of short- and long-range interactions. Cases where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models, respectively) are considered. It is found that the Ising model displays ferroelectric phases in frozen amorphous systems, while the XY and XYZ models form dipolar glass phases at low temperatures. In the dynamically disordered model the equations of motion are decoupled such that particle translation is completely independent of the dipolar forces. These systems spontaneously develop long-range ferroelectric order at nonzero temperature despite the absence of any fined-tuned short-range spatial correlations favoring dipolar order. Furthermore, since this is a nonequilibrium model we find that the paraelectric to ferroelectric transition depends on the particle mass. For the XY and XYZ models, the critical temperatures extrapolate to zero as the mass of the particle becomes infinite, whereas, for the Ising model the critical temperature is almost independent of mass and coincides with the ferroelectric transition found for the randomly frozen system at the same density. Thus in the infinite mass limit the results of the frozen amorphous systems are recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed. Submitted to Phisical Review E. Contact: [email protected]

    Parity Violation in gamma proton Compton Scattering

    Full text link
    A measurement of parity-violating spin-dependent gamma proton Compton scattering will provide a theoretically clean determination of the parity-violating pion-nucleon coupling constant hπNN(1)h_{\pi NN}^{(1)}. We calculate the leading parity-violating amplitude arising from one-loop pion graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde

    Evaluation of effective resistances in pseudo-distance-regular resistor networks

    Full text link
    In Refs.[1] and [2], calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on the stratification of the network and Stieltjes function associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks called pseudo-distance-regular networks [21] or QD type networks \cite{obata} is investigated, where we use the stratification of these networks and show that the effective resistances between a given node such as α\alpha and all of the nodes β\beta belonging to the same stratum with respect to α\alpha (Rαβ(m)R_{\alpha\beta^{(m)}}, β\beta belonging to the mm-th stratum with respect to the α\alpha) are the same. Then, based on the spectral techniques, an analytical formula for effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} such that Lαα−1=Lββ−1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} (those nodes α\alpha, β\beta of the network such that the network is symmetric with respect to them) is given in terms of the first and second orthogonal polynomials associated with the network, where L−1L^{-1} is the pseudo-inverse of the Laplacian of the network. From the fact that in distance-regular networks, Lαα−1=Lββ−1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} is satisfied for all nodes α,β\alpha,\beta of the network, the effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} for m=1,2,...,dm=1,2,...,d (dd is diameter of the network which is the same as the number of strata) are calculated directly, by using the given formula.Comment: 30 pages, 7 figure
    • …
    corecore