9 research outputs found

    Influence of the Modifier Type and its Concentration on Electroosmotic Flow of the Mobile Phase in Pressurized Planar Electrochromatography

    Get PDF
    The aim of this work was to find a relationship between electroosmotic flow (EOF) velocity of the mobile phase in pressurized planar electrochromatography (PPEC) and physicochemical properties like zeta potential, dielectric constant, and viscosity of the mobile phase as well as its composition. The study included different types of organic modifiers (acetonitrile, methanol, ethanol, acetone, formamide, N-methylformamide and N,N-dimethylformamide) in the full concentration range. In all experiments, chromatographic glass plates HPTLC RP-18 W from Merck (Darmstadt) were used as a stationary phase. During the study we found that there is no linear correlation between EOF velocity of the mobile phase and single variables such as zeta potential or dielectric constant or viscosity. However, there is quite strong linear correlation between EOF velocity of the mobile phase and variable obtained by multiplying zeta potential of the stationary phase–mobile phase interface, by dielectric constant of the mobile phase solution and dividing by viscosity of the mobile phase. Therefore, it could be concluded that the PPEC system fulfilled the Helmholtz–Smoluchowski equation

    Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents

    No full text
    In this manuscript, the retention of aromatic hydrocarbons with polar groups has been compared for systems with various nonpolar columns of the types from C3 to C18 and different mobile phases composed of methanol, acetonitrile, or tetrahydrofuran as modifiers. The selectivity separation of the solutes in systems with different adsorbents, when one eluent modifier is swapped by another, has been explained, taking into account molecular interactions of the solutes with components of the stationary phase region (i.e., extracted modifier depending on the chain length of the stationary phase)

    An underestimated technique. Does pressurized and pressure-assisted capillary electrochromatography have potential in drug and pharmacological-active compounds analysis?

    No full text
    Pharmaceutical analysis guarantees patient safety all over the world. Thus, continuous development of existing analytical techniques is still very important. Pressurized capillary electrochromatography and pressure-assisted capillary electrochromatography are hybrid separation techniques that combine the selectivity of liquid chromatography and the high separation efficiency of capillary electrophoresis. They use a smaller amount of reagents and samples, hence, reducing the total cost of analysis. Therefore they have found application in a number of pharmaceutical and biomedical analysis. This review article focuses on the use and importance of pressurized and pressure-assisted capillary electrochromatography in pharmaceutical and biomedical analysis, taking into account types of detectors and capillaries used. Despite the fact that pressurized capillary electrochromatography and pressure assisted capillary electrochromatography offer many possibilities and have been available for over a dozen years, they are still underdevelopment and not fully explored
    corecore