148 research outputs found

    Effects of meteorological factors on epidemic malaria in Ethiopia: a statistical modelling approach based on theoretical reasoning.

    Get PDF
    This study was conducted to quantify the association between meteorological variables and incidence of Plasmodium falciparum in areas with unstable malaria transmission in Ethiopia. We used morbidity data pertaining to microscopically confirmed cases reported from 35 sites throughout Ethiopia over a period of approximately 6-7 years. A model was developed reflecting biological relationships between meteorological and morbidity variables. A model that included rainfall 2 and 3 months earlier, mean minimum temperature of the previous month and P. falciparum case incidence during the previous month was fitted to morbidity data from the various areas. The model produced similar percentages of over-estimation (19.7% of predictions exceeded twice the observed values) and under-estimation (18.6%, were less than half the observed values). Inclusion of maximum temperature did not improve the model. The model performed better in areas with relatively high or low incidence (>85% of the total variance explained) than those with moderate incidence (55-85% of the total variance explained). The study indicated that a dynamic immunity mechanism is needed in a prediction model. The potential usefulness and drawbacks of the modelling approach in studying the weather-malaria relationship are discussed, including a need for mechanisms that can adequately handle temporal variations in immunity to malaria

    Circulation Patterns Associated with Current and Future Rainfall over Ethiopia and South Sudan from a Convection-Permitting Model

    Get PDF
    Ethiopia and South Sudan contain several population centers and important ecosystems that depend on July–August rainfall. Here we use two models to understand current and future rainfall: the first ever pan-African numerical model of climate change with explicit convection and a parameterized model that resembles a typical regional climate model at 4.5 and 25 km horizontal grid-spacing, respectively. The explicit convection and higher resolution of the first model offer a greatly improved representation of both the frequency and intensity of rainfall, when compared to the parametrized convection model. Furthermore, only this model has success in capturing the east–west propagation of rainfall over the full diurnal cycle. Enhanced low-level westerlies were found for extremely wet days, though this response was weaker in the explicit convection model. The increased orographic detail in the explicit model resulted in the splitting of the low-level Turkana Jet core into smaller cores, and inhibited its penetration far into South Sudan. Some projected changes were found to be independent of model, such as changes in the strength of Somali and Turkana jets, as well as the shifting of Turkana jet core to lower levels. However, the explicit model end-of-century projections showed a larger and clearer decrease in wet days, accompanied by an increase in wet day intensity and extreme rainfall. This study highlights serious limitations of relying solely on simulations which parameterize convection to inform decisions in the region of South Sudan and Ethiopia

    A lagrangian analysis of the sources of rainfall over the Horn of Africa drylands

    Get PDF
    The Horn of Africa drylands (HAD) are among the most vulnerable regions to hydroclimatic extremes. The two rainfall seasons—long and short rains—exhibit high intraseasonal and interannual variability. Accurately simulating the long and short rains has proven to be a significant challenge for the current generation of weather and climate models, revealing key gaps in our understanding of the drivers of rainfall in the region. In contrast to existing climate modeling and observation‐based studies, here we analyze the HAD rainfall from an observationally‐constrained Lagrangian perspective. We quantify and map the region's major oceanic and terrestrial sources of moisture. Specifically, our results show that the Arabian Sea (through its influence on the northeast monsoon circulation) and the southern Indian Ocean (via the Somali low‐level jet) contribute ∼80% of the HAD rainfall. We see that moisture contributions from land sources are very low at the beginning of each season, but supply up to ∼20% from the second month onwards, that is, when the oceanic‐origin rainfall has already increased water availability over land. Further, our findings suggest that the interannual variability in the long and short rains is driven by changes in circulation patterns and regional thermodynamic processes rather than changes in ocean evaporation. Our results can be used to better evaluate, and potentially improve, numerical weather prediction and climate models, and have important implications for (sub‐)seasonal forecasts and long‐term projections of the HAD rainfall

    Retrotransposon vectors for gene delivery in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retrotransposons are abundant components of plant genomes, and although some plant retrotransposons have been used as insertional mutagens, these mobile genetic elements have not been widely exploited for plant genome manipulation. In vertebrates and yeast, retrotransposons and retroviruses are routinely altered to carry additional genes that are copied into complementary (c)DNA through reverse transcription. Integration of cDNA results in gene delivery; recombination of cDNA with homologous chromosomal sequences can create targeted gene modifications. Plant retrotransposon-based vectors, therefore, may provide new opportunities for plant genome engineering.</p> <p>Results</p> <p>A retrotransposon vector system was developed for gene delivery in plants based on the Tnt1 element from <it>Nicotiana tabacum</it>. Mini-Tnt1 transfer vectors were constructed that lack coding sequences yet retain the 5' and 3' long terminal repeats (LTRs) and adjacent <it>cis </it>sequences required for reverse transcription. The internal coding region of Tnt1 was replaced with a neomycin phosphotransferase gene to monitor replication by reverse transcription. Two different mini-Tnt1 s were developed: one with the native 5' LTR and the other with a chimeric 5' LTR that had the first 233 bp replaced by the CaMV 35 S promoter. After transfer into tobacco protoplasts, both vectors undergo retrotransposition using GAG and POL proteins provided in <it>trans </it>by endogenous Tnt1 elements. The transposition frequencies of mini-Tnt1 vectors are comparable with native Tnt1 elements, and like the native elements, insertion sites are within or near coding sequences. In this paper, we provide evidence that template switching occurs during mini-Tnt1 reverse transcription, indicating that multiple copies of Tnt1 mRNA are packaged into virus-like particles.</p> <p>Conclusions</p> <p>Our data demonstrate that mini-Tnt1 vectors can replicate efficiently in tobacco cells using GAG and POL proteins provided in <it>trans </it>by native Tnt1 elements. This suggests that helper Tnt1 constructs can be developed to enable a Tnt1-based two-component vector system that could be used in other plant species. Such a vector system may prove useful for gene delivery or the production of cDNA that can serve as a donor molecule for gene modification through homologous recombination.</p

    Arabidopsis thaliana MIRO1 and MIRO2 GTPases Are Unequally Redundant in Pollen Tube Growth and Fusion of Polar Nuclei during Female Gametogenesis

    Get PDF
    MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/−)/miro2-2(−/−) plants. Compared to miro1(+/−) plants, the miro1(+/−)/miro2-2(−/−) plants showed increased segregation distortion. miro1(+/−)/miro2-2(−/−) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/−)/miro2-2(−/−) plants. Further investigations revealed that loss of MIRO2 (miro2(−/−)) function in the miro1(+/−) background enhanced pollen tube growth defects. In developing miro1(+/−)/miro2(−/−) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/−) background enhances the miro1(+/−) phenotype significantly, even though miro2(−/−) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/−)/miro2(−/−) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages

    A WD40 Repeat Protein from Medicago truncatula

    Full text link
    WD40 repeat proteins regulate biosynthesis of anthocyanins, proanthocyanidins (PAs), and mucilage in the seed and the development of trichomes and root hairs. We have cloned and characterized a WD40 repeat protein gene from Medicago truncatula (MtWD40-1) via a retrotransposon-tagging approach. Deficiency of MtWD40-1 expression blocks accumulation of mucilage and a range of phenolic compounds, including PAs, epicatechin, other flavonoids, and benzoic acids, in the seed, reduces epicatechin levels without corresponding effects on other flavonoids in flowers, reduces isoflavone levels in roots, but does not impair trichome or root hair development. MtWD40-1 is expressed constitutively, with highest expression in the seed coat, where its transcript profile temporally parallels those of PA biosynthetic genes. Transcript profile analysis revealed that many genes of flavonoid biosynthesis were down-regulated in a tissue-specific manner in M. truncatula lines harboring retrotransposon insertions in the MtWD40-1 gene. MtWD40-1 complemented the anthocyanin, PA, and trichome phenotypes of the Arabidopsis (Arabidopsis thaliana) transparent testa glabrous1 mutant. We discuss the function of MtWD40-1 in natural product formation in M. truncatula and the potential use of the gene for engineering PAs in the forage legume alfalfa (Medicago sativa)

    Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus

    Get PDF
    BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC), G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance. RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (KM 0.06 mM at pH 5), high catalytic efficiencies, pHopt of 5.5 and Topt at 45 degrees C. The enzyme is not thermostable (T of 18 minutes at 60 degrees C) and the calculated number of bonds between monomers and dimers do not give clear indications for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z. mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 A for C? when comparing GdPDC to that of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci, involving the regions Thr341 to Thr352 and Asn499 to Asp503. CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in G. diazotrophicus.IS
    corecore