398 research outputs found

    Topological pumping in class-D superconducting wires

    Full text link
    We study adiabatic pumping at a normal metal/class-D superconductor hybrid interface when superconductivity is induced through the proximity effect in a spin-orbit coupled nanowire in the presence of a tilted Zeeman field. When the induced order parameter in the nanowire is non-uniform, the phase diagram has isolated trivial regions surrounded by topological ones. We show that in this case the pumped charge is quantized in units of the elementary charge ee and has a topological nature.Comment: 7 pages, 6 figures. Published versio

    Nonlocal superconducting correlations in graphene in the quantum Hall regime

    Get PDF
    We study Andreev processes and nonlocal transport in a three-terminal graphene-superconductor hybrid system under a quantizing perpendicular magnetic field [G.-H. Lee et al., Nature Phys. 13, 693 (2017)]. We find that the amplitude of the crossed Andreev reflection (CAR) processes crucially depends on the orientation of the lattice. By employing Landauer-B\"{u}ttiker scattering theory, we find that CAR is generally very small for a zigzag edge, while for an armchair edge it can be larger than the normal transmission, thereby resulting in a negative nonlocal resistance. In the case of an armchair edge and with a wide superconducting region (as compared to the superconducting coherence length), CAR exhibits large oscillations as a function of the magnetic field due to interference effects. This results in sign changes of the nonlocal resistance

    Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers

    Get PDF
    We report on the use of a novel tritopic phosphonic linker, 2,4,6-tris[3-(phosphonomethyl)phenyl]-1,3,5-triazine, for the synthesis of a layered zirconium phosphonate, named UPG-2. Comparison with the structure of the permanently porous UPG-1, based on the related linker 2,4,6-tris[4-(phosphonomethyl)phenyl]-1,3,5-triazine, reveals that positional isomerism disrupts the porous architecture in UPG-2 by preventing the formation of infinitely extended chains connected through Zr–O–P–O–Zr bonds. The presence of free, acidic P–OH groups and an extended network of hydrogen bonds makes UPG-2 a good proton conductor, reaching values as high as 5.7 × 10−4 S cm−1

    Failure of conductance quantization in two-dimensional topological insulators due to non-magnetic impurities

    Full text link
    Despite topological protection and the absence of magnetic impurities, two-dimensional topological insulators display quantized conductance only in surprisingly short channels, which can be as short as 100 nm for atomically thin materials. We show that the combined action of short-range nonmagnetic impurities located near the edges and on site electron-electron interactions effectively creates noncollinear magnetic scatterers, and, hence, results in strong backscattering. The mechanism causes deviations from quantization even at zero temperature and for a modest strength of electron-electron interactions. Our theory provides a straightforward conceptual framework to explain experimental results, especially those in atomically thin crystals, plagued with short-range edge disorder.Comment: 8 pages, 9 figures, 5 appendice

    “Shake ‘n Bake” Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks

    Get PDF
    We report a novel synthetic procedure for the high-yield synthesis of metal-organic frameworks (MOFs) with topology with a UiO-66-like structure starting from a range of commercial Zr precursors and various substituted dicarboxylic linkers. The syntheses are carried out by grinding in a ball mill the starting reagents, namely, Zr salts and the dicarboxylic linkers, in the presence of a small amount of acetic acid and water (1 mL total volume for 1 mmol of each reagent), followed by incubation at either room temperature or 120 °C. Such a simple "shake 'n bake" procedure, inspired by the solid-state reaction of inorganic materials, such as oxides, avoids the use of large amounts of solvents generally used for the syntheses of Zr-MOF. Acidity of the linkers and the amount of water are found to be crucial factors in affording materials of quality comparable to that of products obtained under solvo- or hydrothermal conditions

    Local density of states in metal - topological superconductor hybrid systems

    Full text link
    We study by means of the recursive Green's function technique the local density-of-states of (finite and semi-infinite) multi-band spin-orbit coupled semiconducting nanowires in proximity to an s-wave superconductor and attached to normal-metal electrodes. When the nanowire is coupled to a normal electrode, the zero-energy peak, corresponding to the Majorana state in the topological phase, broadens with increasing transmission between the wire and the leads, eventually disappearing for ideal interfaces. Interestingly, for a finite transmission a peak is present also in the normal electrode, even though it has a smaller amplitude and broadens more rapidly with the strength of the coupling. Unpaired Majorana states can survive close to a topological phase transition even when the number of open channels (defined in the absence of superconductivity) is even. We finally study the Andreev-bound-state spectrum in superconductor-normal metal-superconductor junctions and find that in multi-band nanowires the distinction between topologically trivial and non-trivial systems based on the number of zero-energy crossings is preserved.Comment: 11 pages, 12 figures, published versio

    Optical and plasmonic properties of twisted bilayer graphene: Impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity

    Full text link
    We present a theoretical study of the local optical conductivity, plasmon spectra, and thermoelectric properties of twisted bilayer graphene (TBG) at different filling factors and twist angles θ\theta. Our calculations are based on the electronic band structures obtained from a continuum model that has two tunable parameters, u0u_0 and u1u_1, which parametrize the intra-sublattice inter-layer and inter-sublattice inter-layer tunneling rate, respectively. In this Article we focus on two key aspects: i) we study the dependence of our results on the value of u0u_0, exploring the whole range 0u0u10\leq u_0\leq u_1; ii) we take into account effects arising from the intrinsic charge density inhomogeneity present in TBG, by calculating the band structures within the self-consistent Hartree approximation. At zero filling factor, i.e. at the charge neutrality point, the optical conductivity is quite sensitive to the value of u0u_0 and twist angle, whereas the charge inhomogeneity brings about only modest corrections. On the other hand, away from zero filling, static screening dominates and the optical conductivity is appreciably affected by the charge inhomogeneity, the largest effects being seen on the intra-band contribution to it. These findings are also reflected by the plasmonic spectra. We compare our results with existing ones in the literature, where effects i) and ii) above have not been studied systematically. As natural byproducts of our calculations, we obtain the Drude weight and Seebeck coefficient. The former displays an enhanced particle-hole asymmetry stemming from the inhomogeneous ground-state charge distribution. The latter is shown to display a broad sign-changing feature even at low temperatures (5 K\approx 5~{\rm K}) due to the reduced slope of the bands, as compared to those of single-layer graphene.Comment: 28 pages, 16 figures, 6 appendice

    Gauge fields and interferometry in folded graphene

    Get PDF
    Folded graphene flakes are a natural byproduct of the micromechanical exfoliation process. In this Letter we show by a combination of analytical and numerical methods that such systems behave as intriguing interferometers due to the interplay between an externally applied magnetic field and the gauge field induced by the deformations in the region of the fold.Comment: 4 pages, 3 figure
    corecore