15 research outputs found

    Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    Get PDF
    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10-40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40-50-times higher and an LOD 64-times lower.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2011/23895-8, 2017/01697-6]Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Rua Talim 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Rua Talim 330, BR-12231280 Sao Jose Dos Campos, SP, BrazilFAPESP [2011/23895-8, 2017/01697-6]Web of Scienc

    Development of photosensitizing nanoparticles

    No full text
    No presente trabalho são apresentadas a síntese e a caracterização estrutural, fotofísica, fotoquímica e fotobiológica de nanopartículas contendo os fotossensibilizadores (FS) Azul de Metileno (AM) e Tionina. AM e Tionina foram incorporados nas nanopartículas sil-AM e sil-Tio pelo processo sol-gel. Nas nanopartículas Cab-Tio, Tionina foi ligada à superfície de sílica CabOsil® através de ligação covalente com reagentes bifuncionais. Todas as nanopartículas mostraram-se esféricas e com de diâmetro médio na faixa de 30 a 60nm. A imobilização dos FS induziu a agregação destes em extensões diferentes para cada tipo de nanopartícula. Foi observado que a maior presença de dímeros de FS leva à menor eficiência de geração de 1O2. Constatou-se que as nanopartículas sofrem pouca influência do meio, uma vez que os FS a elas ligadas não sofreram redução química por NADPH, nem supressão do estado tripleto por íons ascorbato e a supressão de fluorescência por íon brometo foi diminuída. Foi testado também o efeito do recobrimento destas nanopartículas com lipídios dioleilfosfatidil colina (DOPC) e fosfatidilglicerol (PG) e com Polietileno glicol (PEG). A adsorção das nanopartículas sobre membranas miméticas foi reduzida após os recobrimentos, resultado que foi explicado pelas interações de carga superficial (potencial zeta) e pela força de hidratação. As nanopartículas sil-AM e Cab-Tio apresentaram fototoxicidades in vitro, 38% e 20% maiores que os respectivos FS livres. A modificação das nanopartículas de sil-AM com lipídios e com PEG diminuiu a fototoxicidade das mesmas e no caso do recobrimento com lipídios levou ao aumento da toxicidade no escuro. Imagens de microscopia confocal mostraram que as nanopartículas com e sem recobrimento de lipídios entram em células B16. No caso das nanopartículas recobertas, observou-se um perfil de distribuição difuso por todo o citoplasma e no caso de nanopartículas sem recobrimento, estas encontraram-se em poucas regiões vacuolares do citoplasma. O perfil de distribuição homogênea por todo o citoplasma no caso de nanopartículas recobertas com lipídios pode ser o responsável pelo aumento de toxicidade no escuro. Concluiu-se que a ligação dos FS em nanopartículas com diferentes graus de agregação pode ser uma estratégia para obtenção de sistemas com capacidade modulada de geração de 1O2 e com reduzida susceptibilidade às composições do meio. As atividades fototóxicas das nanopartículas contra células B16 mostraram que estas podem ser úteis em Terapia Fotodinâmica de CâncerIn this work we present the synthesis and the characterization (structural, photophysical, photochemical and photobiological) of nanoparticles with incorporated photosensitizers (PS) Methylene Blue (MB) and Thionin. MB and Thionin were incorporated in sil-MB and sil-Th nanoparticles through sol-gel process. In the case of Cab-Th nanoparticles Thionin was linked to the surface of CabOsil® nanoparticles through cross-linking reactions. All nanoparticles were spherical and presented average diameter in the range of 30 to 60nm. Different extension of PS aggregation was observed in each nanoparticle. It was characterized that the higher the proportion of dimers to monomers the smaller the efficiency of singlet oxygen (1O2) generation. It was shown that nanoparticles can protect PS from external interferences, since NADPH did not reduce them, neither were their triplet state quenched by ascorbate ions. Besides, fluorescence quenching by bromide ions was reduced compared to free PS. The effect of covering the nanoparticles with lipids, i.e., di-oleil phosphatidylcholine (DOPC) and phosphatidylglycerol (PG), and with Polyethylene glycol was also tested. The nanoparticle adsorption over membrane mimics was reduced, which was explained by the interaction among surface charges (zeta potential) and by hydration forces. Sil-MB and Cab-Th nanoparticles presented in vitro phototoxicity 38% and 20% higher than the respective free PS. It was observed that the nanoparticle coating with lipids and with PEG reduced their photoxicity. Nanoparticles coated with lipids showed higher toxicity in the dark. Confocal fluorescence images of B16 cells showed that nanoparticles with or without lipid coating enter the cells. In the case of lipid-coated nanoparticles a diffuse distribution profile was observed and in the case of nanoparticles without coating, they concentrated in specific vacuolar regions of the cytoplasm. The homogeneous cytoplasmic distribution profile of lipid-coated nanoparticles can explain the increased toxicity in the dark. It has been concluded that immobilization of PS with different aggregation degrees is a strategy to obtain systems in which the modulated efficiency of 1O2 generation is not affected by the external medium. Finally, based on the observed in vitro phototoxicity activity against B16 cells, these systems can be useful in Photodynamic Therapy of Cance

    Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    Get PDF
    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption

    Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    Get PDF
    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower

    Interaction between nanoparticles, membranes and proteins: A surface plasmon resonance study

    No full text
    International audienceRegardless of the promising use of nanoparticles (NPs) in biomedical applications, several toxic effects have increased the concerns about the safety of these nanomaterials. Although the pathways for NPs toxicity are diverse and dependent upon many parameters such as the nature of the nanoparticle and the biochemical environment, numerous studies have provided evidence that direct contact between NPs and biomolecules or cell membranes leads to cell inactivation or damage and may be a primary mechanism for cytotoxicity. In such a context, this work was focused on the development of a fast and accurate method to characterize the interaction between NPs, proteins and lipidic membranes by surface plasmon resonance imaging (SPRi) technique. The interaction of gold NPs with mimetic membranes was evaluated by monitoring the variation of reflectivity after several consecutive gold NPs injections on the lipidic membranes prepared on the SPRi biochip. The interaction on the membranes with varied lipidic composition was compared regarding the total surface concentration density of gold NPs adsorbed on them. Then, the interaction of gold and silver NPs with blood proteins was analyzed regarding their kinetic profile of the association/dissociation and dissociation constants (koff). The surface concentration density on membrane composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol (POPC/cholesterol) was 2.5 times higher than the value found after the injections of gold NPs on POPC only or with dimethyldioctadecylammonium (POPC/DDAB). Regarding the proteins, gold 26 NPs showed a preferential binding to fibrinogen resulting in a value of variation of reflectivity 8 27 times higher than the value found for the other proteins. Differently, silver NPs showed similar 28 interaction on all the tested proteins but with a variation of reflectivity on immunoglobulin G (IgG) 29 2 times higher than the value found for the other tested proteins

    Interaction between Nanoparticles, Membranes and Proteins: A Surface Plasmon Resonance Study

    No full text
    Regardless of the promising use of nanoparticles (NPs) in biomedical applications, several toxic effects have increased the concerns about the safety of these nanomaterials. Although the pathways for NPs toxicity are diverse and dependent upon many parameters such as the nature of the nanoparticle and the biochemical environment, numerous studies have provided evidence that direct contact between NPs and biomolecules or cell membranes leads to cell inactivation or damage and may be a primary mechanism for cytotoxicity. In such a context, this work focused on developing a fast and accurate method to characterize the interaction between NPs, proteins and lipidic membranes by surface plasmon resonance imaging (SPRi) technique. The interaction of gold NPs with mimetic membranes was evaluated by monitoring the variation of reflectivity after several consecutive gold NPs injections on the lipidic membranes prepared on the SPRi biochip. The interaction on the membranes with varied lipidic composition was compared regarding the total surface concentration density of gold NPs adsorbed on them. Then, the interaction of gold and silver NPs with blood proteins was analyzed regarding their kinetic profile of the association/dissociation and dissociation constants (koff). The surface concentration density on the membrane composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and cholesterol (POPC/cholesterol) was 2.5 times higher than the value found after the injections of gold NPs on POPC only or with dimethyldioctadecylammonium (POPC/DDAB). Regarding the proteins, gold NPs showed preferential binding to fibrinogen resulting in a value of the variation of reflectivity that was 8 times higher than the value found for the other proteins. Differently, silver NPs showed similar interaction on all the tested proteins but with a variation of reflectivity on immunoglobulin G (IgG) 2 times higher than the value found for the other tested proteins
    corecore