270 research outputs found

    Proteome analysis of multidrug-resistant, breast cancer-derived microparticles

    Full text link
    © 2014 Deep Pokharel et al. Cancer multidrug resistance (MDR) occurswhen cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs) and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer-derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp), transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer-derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography-tandem mass spectrometry (LC/MS/MS), in which we identify 120 unique proteins found only in drug-resistant, breast cancer-derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM); and cytoskeleton motor proteins within the MP cargo

    Asymmetry of spin wave dispersions in a hexagonal magnonic crystal

    Get PDF
    PublishedJournal ArticleWe report a study of the dispersion of spin waves in a hexagonal array of interacting ferromagnetic nanodisks for two orthogonal orientations of the in-plane applied magnetic field, i.e., either parallel or perpendicular to the direction of first neighbour disks. The experimental data were modelled using the dynamical matrix method, and the results were interpreted in terms of the effective wave vector model. We have found that spin waves propagating in the two orthogonal directions exhibit marked asymmetry concerning the existence of maxima/minima in their dispersion curves and the sign of their group velocities. © 2013 AIP Publishing LLC.This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement Nos. 228673 (MAGNONICS) and 233552 (DYNAMAG) and by MIUR-PRIN 2010-11 Project 2010ECA8P3 “DyNanoMag.” V.V.K. also acknowledges funding received from EPSRC of the UK under project EP/E055087/1

    Asymmetry of spin wave dispersions in a hexagonal magnonic crystal

    Get PDF
    We report a study of the dispersion of spin waves in a hexagonal array of interacting ferromagnetic nanodisks for two orthogonal orientations of the in-plane applied magnetic field, i.e., either parallel or perpendicular to the direction of first neighbour disks. The experimental data were modelled using the dynamical matrix method, and the results were interpreted in terms of the effective wave vector model. We have found that spin waves propagating in the two orthogonal directions exhibit marked asymmetry concerning the existence of maxima/minima in their dispersion curves and the sign of their group velocities

    Negative magnetic relaxation in superconductors

    Full text link
    It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation) if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor

    Experimental and theoretical analysis of Landauer erasure in nanomagnetic switches of different sizes

    Get PDF
    The authors acknowledge support by the European Union (FPVII (2007-2013) under G.A. n.318287 LANDAUER, and by MIUR-PRIN 2010–11 Project 2010ECA8P3 “DyNanoMag.”. M.P. and P.V. acknowledge funding from the Spanish Ministry of Economy and Competitiveness (Project No. MAT2012-36844); M.P. acknowledges support by Spanish Ministry of Economy and Competitiveness (grant BES-2013-063690).Bistable nanomagnetic switches are extensively used in storage media and magnetic memories, associating each logic state to a different equilibrium orientation of the magnetization. Here we consider the issue of the minimum energy required to change the information content of nanomagnetic switches, a crucial topic to face fundamental challenges of current technology, such as power dissipation and limits of scaling. The energy dissipated during a reset operation, also known as “Landauer erasure”, has been accurately measured at room temperature by vectorial magneto-optical measurements in arrays of elongated Permalloy nanodots. Both elliptical and rectangular dots were analysed, with lateral sizes ranging from several hundreds to a few tens of nanometers and thickness of either 10 nm or 5 nm. The experimental results show a nearly linear decrease of the dissipated energy with the dot volume, ranging from three to one orders of magnitude above the theoretical Landauer limit of kBT×ln(2). These experimental findings are corroborated by micromagnetic simulations showing that the significant deviations from the ideal macrospin behavior are caused by both inhomogeneous magnetization distribution and edge effects, leading to an average produced heat which is appreciably larger than that expected for ideal nanoswitches.PostprintPeer reviewe

    Pr 0.5 Ca 0.5 MnO 3 thin films deposited on LiNbO 3 substrates

    Get PDF
    Thin films of Pr 0.5 Ca 0.5 MnO 3 have been deposited on z-cut LiNbO 3 by pulsed laser ablation. The X-ray diffraction measurements showed that the films have grown highly oriented on LiNbO 3 , with a pseudocubic (111) preferred growth direction. The thicknesses of the films, measured by low angle X-ray reflectivity, are between 13 and 140 nm. Their electrical resistivity present a semiconducting-like behaviour with an anomaly around 240 K, that corresponds to the charge ordering transition. The temperature of the transition (T_CO) was estimated from ln(r) vs. (1/T) plots. The charge ordering temperature was found to be dependent on the strain induced by the lattice mismatch on the films.Fundação para a Ciência e a Tecnologia (FCT

    Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD)

    Get PDF
    Indexación: Scopus.Nonalcoholic fatty liver disease (NAFLD) is a pathology that contains a broad liver dysfunctions spectrum. These alterations span from noninflammatory isolated steatosis until nonalcoholic steatohepatitis (NASH), a more aggressive form of the disease characterized by steatosis, inflammatory status, and varying liver degrees fibrosis. NAFLD is the most prevalent chronic liver disease worldwide. The causes of NAFLD are diverse and include genetic and environmental factors. The presence of NASH is strongly associated with cirrhosis development and hepatocellular carcinoma, two conditions that require liver transplantation. The liver alterations during NAFLD are well described. Interestingly, this pathological condition also affects other critical tissues and organs, such as skeletal muscle and even the cardiovascular, renal, and nervous systems. Oxidative stress (OS) is a harmful state present in several chronic diseases, such as NAFLD. The purpose of this review is to describe hepatic and extrahepatic dysfunctions in NAFLD. We will also review the influence of OS on the physiopathological events that affect the critical function of the liver and peripheral tissues.https://www.hindawi.com/journals/omcl/2020/1617805/#copyrigh
    corecore