75 research outputs found

    Synthesis and structural characterisation of bismuth(III) hydroxamates and their activity against Helicobacter pylori

    Get PDF
    Seven new bismuth(III) hydroxamate complexes derived from the hydroxamic acids N-methylfurohydroxamic acid (H-MFHA), N-benzoyl-N-phenylhydroxamic acid (H-BPHA), salicylhydroxamic acid (H2-SHA), benzohydroxamic acid (H2-BHA), and acetohydroxamic acid (H2-AHA) have been synthesized and characterized. The complexes formed are either tris-hydroxamato complexes containing only mono-anionic ligands, [Bi(H-SHA)3], [Bi(MFHA)3] and [Bi(BPHA)3]; mixed-anion complexes, [Bi(SHA)(H-SHA)] and [Bi(AHA)(H-AHA)]; and potassium bismuthate complexes, K[Bi(SHA)2] and K[Bi(BHA)2]. The solid-state structure of three complexes has been determined through single crystal X-ray diffraction; [Bi(MFHA)3]2·Me2C[double bond, length as m-dash]O, {[Bi(SHA)(H-SHA)(DMSO)2][Bi(SHA)(H-SHA)(DMSO)]·DMSO}∞ and [Bi(BPHA)3]2·2EtOH. All the complexes and their parent acids were assessed for the bactericidal activity against three strains of Helicobacter pylori (26695, B128 and 251). Of the acids, only acetohydroxamic acid showed any activity at low concentrations (MIC 6.25 μg mL−1; 83.26 µM) while the others were not toxic below 25 μg mL−1. In contrast, their bismuth(III) complexes all showed excellent activity across all three strains (e.g. 0.28 μM for [Bi(H-SHA)3] to 6.01 μM for K[Bi(BHA)2] against strain 251) with only minor variations in activity being both ligand and composition dependant

    Low spin spectroscopy of neutron-rich 43,44,45Cl via {\beta} and (\beta}n decay

    Full text link
    {\beta} decay of neutron-rich isotopes 43,45 S,studied at the National Superconducting Cyclotron Laboratory is reported here. {\beta} delayed {\gamma} transitions were detected by an array of 16 clover detectors surrounding the Beta Counting Station which consists of a 40x40 Double Sided Silicon Strip Detector followed by a Single Sided Silicon Strip Detector. {\beta} decay half-lives have been extracted for 43,45 S by correlating implants and decays in the pixelated implant detector with further coincidence with {\gamma} transitions in the daughter nucleus. The level structure of 43,45 Cl is expanded by the addition of 20 new {\gamma} transitions in 43Cl and 8 in 45 Cl with the observation of core excited negative-parity states for the first time. For 45 S decay, a large fraction of the {\beta} decay strength goes to delayed neutron emission populating states in 44 Cl which are also presented. Comparison of experimental observations is made to detailed shell-model calculations using the SDPFSDG-MU interaction to highlight the role of the diminished N = 28 neutron shell gap and the near degeneracy of the proton s 1/2 and d 3/2 orbitals on the structure of the neutron-rich Cl isotopes. The current work also provides further support to a ground state spin-parity assignment of 3/2 + in 45 Cl

    A dexamethasone prodrug reduces the renal macrophage response and provides enhanced resolution of established murine lupus nephritis

    Get PDF
    We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    DNA primase acts as a molecular brake in DNA replication

    Get PDF
    A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Disorders of sex development: effect of molecular diagnostics

    Get PDF
    Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs
    corecore