2,445 research outputs found

    Skylab investigation of the upwelling off the Northwest coast of Africa

    Get PDF
    The upwelling off the NW coast of Africa in the vicinity of Cape Blanc was studied in February - March 1974 from aircraft and in September 1973 from Skylab. The aircraft study was designed to determine the effectiveness of a differential radiometer in quantifying surface chlorophyll concentrations. Photographic images of the S190A Multispectral Camera and the S190B Earth Terrain Camera from Skylab were used to study distributional patterns of suspended material and to locate ocean color boundaries. The thermal channel of the S192 Multispectral Scanner was used to map sea-surface temperature distributions offshore of Cape Blanc. Correlating ocean color changes with temperature gradients is an effective method of qualitatively estimating biological productivity in the upwelling region off Africa

    Transport in Almost Integrable Models: Perturbed Heisenberg Chains

    Full text link
    The heat conductivity kappa(T) of integrable models, like the one-dimensional spin-1/2 nearest-neighbor Heisenberg model, is infinite even at finite temperatures as a consequence of the conservation laws associated with integrability. Small perturbations lead to finite but large transport coefficients which we calculate perturbatively using exact diagonalization and moment expansions. We show that there are two different classes of perturbations. While an interchain coupling of strength J_perp leads to kappa(T) propto 1/J_perp^2 as expected from simple golden-rule arguments, we obtain a much larger kappa(T) propto 1/J'^4 for a weak next-nearest neighbor interaction J'. This can be explained by a new approximate conservation law of the J-J' Heisenberg chain.Comment: 4 pages, several minor modifications, title change

    Mental health in higher education students and non-students: evidence from a nationally representative panel study

    Get PDF
    Despite increasing policy focus on mental health provision for higher education students, it is unclear whether they have worse mental health outcomes than their non-student peers. In a nationally-representative UK study spanning 2010-2019 (N = 11,519), 17-24 year olds who attended higher education had lower average psychological distress (GHQ score difference =  - 0.37, 95% CI - 0.60, - 0.08) and lower odds of case-level distress than those who did not (OR = 0.91, 95% CI 0.81, 1.02). Increases in distress between 2010 and 2019 were similar in both groups. Accessible mental health support outside higher education settings is necessary to prevent further widening of socioeconomic inequalities in mental health

    Variation of the glass transition temperature with rigidity and chemical composition

    Full text link
    The effects of flexibility and chemical composition in the variation of the glass transition temperature are obtained by using the Lindemann criteria, that relates melting temperature with atomic vibrations. Using this criteria and that floppy modes at low frequencies enhance in a considerable way the average cuadratic displacement, we show that the consequence is a modified glass transition temperature. This approach allows to obtain in a simple way the empirically modified Gibbs-DiMarzio law, which has been widely used in chalcogenide glasses to fit the changes in the glass transition temperature with the chemical composition . The method predicts that the constant that appears in the law depends upon the ratio of two characteristic frequencies (or temperatures). Then, the constant for the Se-Ge-As glass is estimated by using the experimental density of vibrational states, and the result shows a very good agreement with the experimental fit from glass transition temperature variation

    The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity

    Full text link
    We analyze a detailed model of a Bose-Einstein condensate trapped in a ring optical resonator and contrast its classical and quantum properties to those of a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light fields and three matter field modes leads to important differences between the two situations. Specifically, we identify an experimentally realizable region where the system's behavior differs strongly from that of a BEC in a Fabry-P\'{e}rot cavity, and also where quantum corrections become significant. The classical dynamics are rich, and near bifurcation points in the mean-field classical system, the quantum fluctuations have a major impact on the system's dynamics.Comment: 11 pages, 11 figures, submitted to PR

    Energy landscape and rigidity

    Full text link
    The effects of floppy modes in the thermodynamical properties of a system are studied. From thermodynamical arguments, we deduce that floppy modes are not at zero frequency and thus a modified Debye model is used to take into account this effect. The model predicts a deviation from the Debye law at low temperatures. Then, the connection between the topography of the energy landscape, the topology of the phase space and the rigidity of a glass is explored. As a result, we relate the number of constraints and floppy modes with the statistics of the landscape. We apply these ideas to a simple model for which we provide an approximate expression for the number of energy basins as a function of the rigidity. This allows to understand certains features of the glass transition, like the jump in the specific heat or the reversible window observed in chalcogenide glasses.Comment: 1 text+3 eps figure

    On vacuum gravitational collapse in nine dimensions

    Full text link
    We consider the vacuum gravitational collapse for cohomogeneity-two solutions of the nine dimensional Einstein equations. Using combined numerical and analytical methods we give evidence that within this model the Schwarzschild-Tangherlini black hole is asymptotically stable. In addition, we briefly discuss the critical behavior at the threshold of black hole formation.Comment: 4 pages, 4 figure

    A Method for Evaluating Local Scour Depth at Bridge Piers due to Debris Accumulation

    Get PDF
    This is the author accepted manuscript. The final version is available from Thomas Telford via the DOI in this record This paper introduces a novel method for evaluating the effect of debris accumulation on local scour depth at bridge piers. The concept of a debris factor is proposed to replace the current effective and equivalent pier width approaches that have been shown to overestimate debris-induced scour in many instances. The concept enables a simpler, more direct and realistic estimation of the change in local scour depth due to debris since it accounts for (i) debris length (streamwise), width (spanwise) and thickness (depth wise), and (ii) the influence of debris elevation in flow, i.e. is applicable for free-surface debris, submerged debris, or debris resting on the stream bed. The concept works with all existing local scour equations alongside other factors that influence scour depth such as flow angle of attack and pier shape. The mathematical model that underpins the proposed concept is derived through multiple linear regression on experimental data obtained at Exeter and elsewhere. The proposed method is shown to improve accuracy by at least 24% and 5% in comparison to the effective and equivalent pier width approaches, respectively. More importantly, the method is shown to be robust, providing highly consistent results with significantly less uncertainty.Engineering and Physical Sciences Research Council (EPSRC
    corecore