36 research outputs found

    Smell and taste alterations in Covid-19: a cross-sectional analysis of different cohorts

    Get PDF
    Olfactory (OD) and gustatory (GD) dysfunction have been proven to be a typical symptom of SARS-CoV-2 infection. However, their prevalence in different patient populations still needs to be clarified

    When is a multidisciplinary surgical approach required in sinonasal tumours with cranial involvement?

    No full text
    The term "sinonasal tumours" includes a large spectrum of diseases, which are characterized by heterogeneous biological behavior and prognosis, and located in a critical anatomic area. Diagnosis and treatment of sinonasal tumours require the contribution of different disciplines. A narrative review was performed to highlight the role of surgeons in contributing to a multidisciplinary approach to sinonasal tumours. Diagnosis and staging of sinonasal tumours is challenging and requires collaboration between surgeons, radiologists, and pathologists. The identification and management of critical extensions (orbital or intracranial encroachment, vascular abutment or encasement) is fundamental for successful treatment. Most cases of advanced sinonasal tumours can undergo surgical intervention by an adequately trained otorhinolaryngological team. The contribution of neurosurgeons and oculoplastic surgeons is required in selected scenarios. In rare circumstances, multidisciplinary reconstructive strategies can be indicated for complex tissue defects. Furthermore, a multidisciplinary approach is pivotal in the management of perioperative complications. While surgery remains the mainstay of treatment, the role of non-surgical adjuvant or even exclusive treatments is constantly expanding

    Effects of recovery interval duration on the parameters of the critical power model for incremental exercise

    No full text
    INTRODUCTION: We tested the linear critical power ([Formula: see text]) model for discrete incremental ramp exercise implying recovery intervals at the end of each step. METHODS: Seven subjects performed incremental (power increment 25 W) stepwise ramps to subject's exhaustion, with recovery intervals at the end of each step. Ramps' slopes (S) were 0.83, 0.42, 0.28, 0.21, and 0.08 W s-1; recovery durations (t r) were 0 (continuous stepwise ramps), 60, and 180 s (discontinuous stepwise ramps). We determined the energy store component (W'), the peak power ([Formula: see text]), and [Formula: see text]. RESULTS: When t r = 0 s, [Formula: see text] and W' were 187 ± 26 W and 14.5 ± 5.8 kJ, respectively. When t r = 60 or 180 s, the model for ramp exercise provided inconsistent [Formula: see text] values. A more general model, implying a quadratic [Formula: see text] versus [Formula: see text] relationship, was developed. This model yielded, for t r = 60 s, [Formula: see text] = 189 ± 48 W and W' = 18.6 ± 17.8 kJ, and for t r = 180 s, [Formula: see text] = 190 ± 34 W, and W' = 16.4 ± 16.7 kJ. These [Formula: see text] and W' did not differ from the corresponding values for t r = 0 s. Nevertheless, the overall amount of energy sustaining work above [Formula: see text], due to energy store reconstitution during recovery intervals, was higher the longer t r, whence higher [Formula: see text] values. CONCLUSIONS: The linear [Formula: see text] model for ramp exercise represents a particular case (for t r = 0 s) of a more general model, accounting for energy resynthesis following oxygen deficit payment during recovery

    Cardiovascular responses to dry apnoeas at exercise in air and in pure oxygen

    Get PDF
    If, as postulated, the end of the steady state phase (φ2) of cardiovascular responses to apnoea corresponds to the physiological breaking point, then we may hypothesize that φ2 should become visible if exercise apnoeas are performed in pure oxygen. We tested this hypothesis on 9 professional divers by means of continuous recording of blood pressure (BP), heart rate (fH), stroke volume (QS), and arterial oxygen saturation (SpO2) during dry maximal exercising apnoeas in ambient air and in oxygen. Apnoeas lasted 45.0 ± 16.9 s in air and 77.0 ± 28.9 s in oxygen (p < 0.05). In air, no φ2 was observed. Conversely, in oxygen, a φ2 of 28 ± 5 s duration appeared, during which systolic BP (185 ± 29 mmHg), fH (93 ± 16 bpm) and QS (91 ± 16 ml) remained stable. End-apnoea SpO2 was 95.5 ± 1.9% in air and 100% in oxygen. The results support the tested hypothesis
    corecore