6 research outputs found

    Relationship of runoff, erosion and sediment yield to weather types in the Iberian Peninsula

    Get PDF
    Precipitation has been recognized as one of the main factors driving soil erosion and sediment yield (SY), and its spatial and temporal variability is recognized as one of themain reasons for spatial and temporal analyses of soil erosion variability. The weather types (WTs) approach classifies the continuumof atmospheric circulation into a small number of categories or types and has been proven a good indicator of the spatial and temporal variability of precipitation. Thus, themain objective of this study is to analyze the relationship betweenWTs, runoff, soil erosion (measured in plots), and sediment yield (measured in catchments) in different areas of the Iberian Peninsula (IP) with the aimof detecting spatial variations in these relationships. To this end, hydrological and sediment information covering the IP from several Spanish research teams has been combined, and related with daily WTs estimated by using the NMC/NCAR 40-Year Reanalysis Project. The results showthat, in general, a fewWTs (particularly westerly, southwesterly and cyclonic) provide the largest amounts of precipitation; and southwesterly, northwesterly and westerly WTs play an important role in runoff generation, erosion and sediment yield as they coincide with the wettest WTs. However, this study highlights the spatial variability of erosion and sediment yield in the IP according to WT, differentiating (1) areas under the influence of north and/or north-westerly flows (the north coast of Cantabria and inland central areas), (2) areas under the influence of westerly, southwesterly and cyclonic WTs (western and southwestern IP), (3) areas in which erosion and sediment yield are controlled by easterly flows (Mediterranean coastland), and (4) lastly, a transitional zone in the inland northeast Ebro catchment,wherewe detected a high variability in the effects ofWTs on erosion. Overall results suggest that the use of WTs derived fromobserved atmospheric pressure patterns could be a useful tool for inclusion in future projections of the spatial variability of erosion and sediment yield, as models capture pressure fields reliably

    Towards Equitable, Diverse, and Inclusive science collaborations: The Multimessenger Diversity Network

    Get PDF

    Towards Equitable, Diverse, and Inclusive science collaborations: The Multimessenger Diversity Network

    Get PDF
    International audienceThe Multimessenger Diversity Network (MDN), formed in 2018, extends the basic principle of multimessenger astronomy – that working collaboratively with different approaches enhances understanding and enables previously impossible discoveries – to equity, diversity, and inclusion (EDI) in science research collaborations. With support from the National Science Foundation INCLUDES program, the MDN focuses on increasing EDI by sharing knowledge, experiences, training, and resources among representatives from multimessenger science collaborations. Representatives to the MDN become engagement leads in their collaboration, extending the reach of the community of practice. An overview of the MDN structure, lessons learned, and how to join are presented
    corecore