127 research outputs found

    Árbol de decisión para diagnosticar la capacidad productiva de suelos de la región pampeana.

    Get PDF
    Los suelos constituyen un continuum a través de la superficie terrestre. Cada combinación específica de paisaje, clima, material parental, proceso de meteorización, vegetación y manejo determina diferentes unidades de suelo. En suelos agrícolas, la distinción entre diferentes unidades de suelo suele ser muy compleja y requiere experiencia de campo. De hecho, tanto estudiantes de grado en las Universidades como profesionales poseen dificultades para diagnosticar la aptitud de los suelos para la producción de cultivos. Con el objeto de facilitar la identificación de la aptitud productiva de las diferentes unidades de suelo, se ha desarrollado un árbol de decisión o cursograma, con énfasis en los suelos pampeanos. La Región Pampeana argentina es la más productiva en términos agrícolas y varios de sus suelos son considerados dentro de los más fértiles del planeta. Sin embargo, éstos se encuentran distribuidos en el paisaje formando un intrincado patrón con otros menos productivos.El árbol de decisión fue organizado en dos pasos sucesivos (1: Paisaje; y 2: Perfil del suelo), que conducen al paso final 3: Nivel de aptitud para cultivos. El análisis de paisaje incluye la frecuencia de anegamientos, la presencia de suelos arenosos y la pendiente. El análisis del perfil de suelo comienza con la identificación de las principales limitantes: salinidad,sodicidad, anegamiento, impedancias mecánicas, y el espesor del horizonte superficial. Esperamos que esta nueva herramienta, diseñada para estudiantes de grado y profesionales pueda ser utilizada para hacer un primer diagnóstico de suelos.Fil: Rubio, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Parque Centenario. Instituto de Investigaciones en Biociencias Agricolas y Ambientales; Argentina;Fil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria. Centro Nacional de Inv. Agropecuarias. Centro de Investigacionesde Recursos Naturales; Argentina

    Fertilizer use soil health and agricultural sustainability

    Get PDF
    Due to the growing population and consequent pressure of use, agricultural soils must maintain adequate levels of quantity and quality to produce food, fiber, and energy, without falling victim to a negative impact on their balance of nutrients, health, or their ability to function. The use of mineral fertilizers has long been a key tool to offset nutrient outputs and thus achieve increased yields [1–4]. Fertilizer application is believed to have been responsible for at least 50% increase in crop yield in the 20th century [5,6]. According to [5], average corn yields would decline by 40 percent without nitrogen (N) fertilizer application, while long-term studies confirmed a 40–57 percent yield decline in wheat without fertilizer application. Yousaf et al. [6] reported a 19–41% yield increase in rice, and a 61–76% increase in rapeseed with the combined application of NPK fertilizers. However, due to the inappropriate use of mineral fertilizers (i.e., when used in both excess or deficiency), mostly concerning nitrogenous and phosphate, many productive soils have been thwarted in their ability to function, as shown not only by chemical indicators but also by physical and biological ones. Thus, improper fertilizing technology might have a negative effect on soil health and soil-related ecosystem services. Imbalanced use of chemical fertilizers can alter soil pH, and increase pests attack, acidification, and soil crust, which results in a decrease in soil organic carbon and useful organisms, stunting plant growth and yield, and even leading to the emission of greenhouse gases [7,8]. Soil health is defined as the capacity of soil to function as a vital living system, within ecosystem and land-use boundaries, to sustain plant and animal health and productivity, and maintain or improve water and air quality. A major challenge for agricultural sustainability is to conserve ecosystem service delivery while optimizing agricultural yields. This Special Issue addresses the task to find a balance between increasing yields using conventional and novel fertilizers, and the maintenance of soil and environmental health as a basis for the sustainable intensification of the agricultural sector. The purpose of this issue was to provide new knowledge on fertilizer use, soil health, and agricultural sustainability. We received a total of 13 papers that provided interesting and innovative information. Five of them [9–13] were works on basic studies on the status of nutrients. These studies were based on the reviews of published works, or on experiments under controlled conditions (greenhouse and incubation) referring to nitrogen losses due to volatilization, leaching, denitrification, the distribution of nutrients, the combined or integrated use of mineral and organic fertilizers, bio-based nitrogen, or new findings in sulfur, a largely low-attended nutrient.Fil: Krasilnikov, Pavel. Lomonosov Moscow State University. Department of Soil Geography; RusiaFil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amanullah. The University of Agriculture. Faculty of Crop Production Sciences. Department of Agronomy; Paquistá

    Soil structural behaviour in flooded and agricultural soils of the Argentine pampas

    Get PDF
    Les sols de la Pampa argentine, sur loess, ont évolué différemment suivant la topographie et les pratiques agricoles, d'où un comportement de la structure du sol différent. Dans la Pampa inondable, les solonetz, inondés chaque hiver-printemps et desséchés chaque été, sont pâturés par le bétail tout au long de l'année. Les effets du piétinement sont peu connus dans ces conditions environnementales. Dans la Pampa ondulée voisine, sous labourage conventionnel à long terme (CT), les sols limoneux sont affectés par des phénomènes d'érosion liés à des dégradations physiques du sol et au ruissellement d'eau de surface. Après le zéro labourage (ZT), ces sols développent souvent un tassement superficiel. Peu d'informations concernent le rétablissement de la structure par les mécanismes abiotiques (cycle W/D) et biotiques (végétation). L'objectif de cette thèse est de faire une analyse comparative des facteurs naturels et anthropiques affectant le comportement structural du sol pris par paire. ABSTRACT : Soils of the Argentine Pampas have been developed over same parent material (loess), but evolved under different topography and land use. This led to different soil structural behaviour. In the flooding Pampa of Argentina soils (Solonetzes) are flooded each winter-spring and dried each summer, and are grazed by livestock all year round. Little is known about cattle trampling effects under these environmental conditions. In the nearby rolling Pampa, there are silty loams affected by physical deterioration and water erosion losses after long term conventional tillage (CT). After continuous zero tillage (ZT) these soils often develop shallow compaction. Little is known about abiotic and biotic mechanisms of structural recovery. The general objective of this thesis was to analyze comparatively natural and made-man factors affecting soil structural behaviour in soils with similar parent material (loess) and vegetation (grassland), but later affected by different relief and soil use factors. In the flooding Pampa results showed the occurrence of significant soil volume changes by swelling and shrinking. Soils swell during flooding because of a process of air entrapment. Livestock trampling causes the mechanical destruction of surface macropores in summer when soil dries. The regeneration of damaged pores takes place during flooding, when soils swell at maximum. Droughts -and not floods- cause negative environmental effects in this area. In the rolling Pampa similar soil macropore volumes were determined in pasture, CT and ZT situations, showing none effect from soil management. Topsoil hardening was often found after short term ZT. Results from a greenhouse experiment showed that aggregate stabilization requires a previous fragmentation by short wetting-drying cycles. Clod shrinkage curves and soil cracking studies showed that silty loams do not have the expected poor response to W/D cycles. However, their air filled porosity increases little during drying. Results showed topsoil aggregation to be mainly abiotic in the flooding Pampa, and abiotic and biotic in the rolling Pampa, showing different structural behaviour in soils evolved from same parent material but different relief and land use

    Null creation of air-filled structural pores by soil cracking and shrinkage in silty loamy soils

    Get PDF
    Information about abiotic regeneration of air-filled porosity in silty soils is scarce. It could be a key mechanism to explain their low physical resilience. In the present work, we aim at evaluating whether changes in intrinsic soil properties (e.g., soil organic carbon, clay content, and clay mineralogy) caused by degradation affected soil volume response to wetting-drying cycles. Volume and size distribution of cracks and clod shrinkage curves were determined in silty loamy soils (Typic Argiudoll) of Argentina under nearby conventionally tilled (CT), eroded CT, and Pasture management. Crack volume increased from 1000 cm3 in CT and Pasture soils to 6000 cm3 in the more clayey and swelling eroded CT soil. Crack size distribution was similar in all studied soils with large cracks (first and second size order) prevailing over small ones (fourth and fifth size order). Clod shrinkage curves had no S-shape, thus showing the lack of structural shrinkage in all studied soil management regimens. Air content in structural pores was as low as 0.03 to 0.10 cm3 gj1 at the air entry point. This little air entry during drying agreed with the lack of small cracks and can be related to the prevalence of plasma (i.e., silt and clay) over sand. Results showed that key intrinsic properties did not drive soil volume changes in the studied silty loamy soils. They change their volume during drying, but the creation of air-filled structural pores is little or null.Fil: Taboada, Miguel Angel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbosa, Osvaldo Andres. Universidad Nacional de San Luis; ArgentinaFil: Cosentino, Diego. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Edafología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Effect of deforestation and subsequent land use management on soil carbon stocks in the South American Chaco

    Get PDF
    Osinaga, Natalia Andrea. CONICET. Buenos Aires, Argentina.Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.Taboada, Miguel Angel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes. Buenos Aires, Argentina.251-257The subhumid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the 1970s and replacement of the forest by no-till farming. Land use changes produced a decrease in aboveground carbon (C) stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1m depth in soils under different land use: smaller than 10-year continuous cropping, greater than 20-year continuous cropping, warm-season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1mdepth expressed as equivalent mass varied as follows: forest (119.3Mgha-1) greater than pasture (87.9Mgha-1) greater than continuous cropping (71.9 and 77.3Mgha-1), with no impact of the number of years under cropping. The coarse particle fraction (2000–212 μm) at 0–5 and 5–20 cm depth layers was the most sensitive organic carbon fraction to land use change. Resistant carbon (smaller than 53 μm) was the main organic matter fraction in all sample categories except in the forest. Organic C stock, its quality and its distribution in the profile were responsive to land use change. The conversion of the Chaco forest to crops was associated with a decrease of organic C stock up to 1m depth and with the decrease of the labile fraction. The permanent pastures of warm-season grasses allowed higher C stocks to be sustained than cropping systems and so could be considered a sustainable land use system in terms of soil C preservation. As soil organic C losses were not restricted to the first few centimetres of the soil, the development of models that would allow the estimation of soil organic C changes in depth would be useful to evaluate the impact of land use change on C stocks with greater precision

    Effect of deforestation and subsequent land-use management on soil carbon stocks in the South American Chaco

    Get PDF
    The sub-humid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the ´70 and replacement of the forest by no till farming. Land use changes produced a decrease in aboveground carbon stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1 m depth in soils under different land use:  20 yr continuous cropping, warm season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1 m depth expressed as equivalent mass varied as follows: forest (119.3 Mg ha−1) > pasture (87.9 Mg ha−1) > continuous cropping (71.9 and 77.3 Mg ha−1), with no impact of the number of years under cropping. The most sensitive organic carbon fraction was the coarse particle fraction (2000 μm?212 μm) at 0?5 cm and 5?20 cm depth layers. Resistant carbon (< 53 μm) was the main organic matter fraction in all sample categories except in the forest. Organic C stock, its quality and distribution in the profile were sensitive to land use change. The conversion of the Chaco forest to crops was associated to a decrease of Organic C stock up to the meter depth and with the decrease of the labile fraction. The incorporation of pastures of warm-season grasses was able to mitigate the decrease of C stocks caused by cropping and so could be considered a sustainable management practice. As soil organic carbon losses were not restricted to the first few cm of the soil, the development of models that would allow the estimation of soil organic carbon changes in depth would be useful to evaluate with greater precision the impact of land use change on carbon stocks.Fil: Osinaga, Natalia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez, Carina Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; ArgentinaFil: Taboada, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentin

    Assessment of topsoil properties in integrated crop-livestock and continuous cropping systems under zero tillage

    Get PDF
    A regional study was conducted in the northern Pampas of Argentina in order to compare soil quality at proximal cropland sites that are managed under either continuous cropping (CC) (n = 11) or integrated crop-livestock (ICL) (n = 11) systems under zero tillage. In the ICL system, samples were taken in the middle of the agricultural period. Although soil total and resistant organic carbon (TOC, ROC) were significantly higher in silt loam soils than in loam/sandy loam soils, variations in carbon concentration were not associated with differences in soil management. Soil relative compaction was the only property that was significantly (P < 0.05) affected by the soil type-management interaction. Soil relative compaction values were significantly lower with ICL in loam/sandy loam soils, but there were no significant differences in silt loam soils. Structural instability index showed little change from CC to ICL sites, indicating that there was no soil structural damage. Soil penetration resistance was significantly higher in ICL soils within the first 0.075m of soil depth, slightly exceeding the critical threshold (2000 kPa). However, firmer topsoil under ICL was not due to shallow compaction, as evidenced by no increase in soil bulk density.Fil: Fernández, Patricia Lilia. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Ocho preguntas frecuentes sobre cambio climático

    Get PDF
    La presentación consiste en responder a estas preguntas frecuentes: 1. ¿Qué es el cambio climático?. 2. ¿Por qué se produce el cambio climático?. 3. ¿Cuál es la diferencia entre cambio climático y calentamiento global?. 4. ¿Qué son los gases de efecto invernadero?. 5. ¿Qué actividades los generan?. 6. ¿Cuáles son los países que más los producen?. 7. ¿Argentina en el balance global de emisiones?. 8. ¿Qué lugar ocupa la agricultura y la ganadería dentro de todas las actividades en el país?Fil: Posse Beaulieu, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Taboada, Miguel Angel. Carbon Group Agroclimatic Solutions SRL; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Cátedra de Edafología; Argentina. Academia Nacional de Agronomía y Veterinaria; Argentin

    Contribution of biological nitrogen fixation to N2O emission from soil under soybean

    Get PDF
    El óxido nitroso (N2 O) es el principal gas de efecto invernadero emitido desde el sector agrícola y su producción biológica en los suelos se genera por dos vías, la nitrificación y la desnitrificación. Recientemente el Panel Intergubernamental para el Cambio Climático (IPCC) ha excluido de sus directrices de inventario a la Fijación Biológica del Nitrógeno (FBN) como fuente de emisión de N2 O por los cultivos leguminosos, debido a la falta de evidencia segura sobre la existencia de estas emisiones. Pese a ello, en la actualidad se sigue discutiendo sobre la emisión de N2 O real emitida desde los cultivos leguminosos a campo, en especial en soja que es el principal producto producido por la Argentina y fuente de biodiesel. La influencia de FBN sobre la emisión de N2 O puede probarse utilizando variedades de soja no nodulante. El objetivo de este trabajo fue comparar y analizar la emisión de N2 O desde suelos con cultivos de soja de variedad nodulante y no nodulante, con el fin de evaluar la influencia real del cultivo sobre la emisión de N2 O a campo. Las muestras de gas fueron colectadas con cámaras cerradas no ventiladas. La emisión de N2 O varió entre -9 y 15 μg N-N2 O m-2 h-1. Sólo se observó diferencia significativa en la emisión de N2 O entre los tratamientos en la última fecha de muestreo (no nodulante > nodulante). La emisión de N2 O se relacionó positivamente con la concentración de N-NO3 - del suelo y con el espacio poroso lleno de agua (EPLLA). Esta ausencia de diferencia significativa en los valores de emisión de N2 O entre los tratamientos, indica que la soja nodulante no emitió mayor cantidad de N2 O que la no nodulante, revelando que la presencia de nódulos fijadores per se no afectó la cantidad de N2 O emitida durante el crecimiento del cultivo de soja. Estos resultados avalan lo establecido por las últimas directrices de IPCC 2006 y ponen en cuestión otras metodologías de inventario que cargan más emisión de N2 O a los cultivos de soja. Los resultados del presente estudio muestran que la FBN sólo causó un ligero impacto en la emisión de N2 O, en concordancia con las últimas directrices del IPCC del 2006 para los inventarios de GEI.Nitrous oxide (N2 O) is the main greenhouse gas (GHG) emitted from agricultural soils as a by-pass product of nitrification and denitrification processes. The Intergovernmental Panel on Climate Change (IPCC) excluded from its GHG inventory guidelines in 2006 the Nitrogen Biological Fixation (NBF) as a source of N2 O emissions by crop legumes, due to the lack of solid scientific evidenceon the existence of these emissions. However, at present the actual amount of N2 O emissions by crop legumes in the field is still under investigation, with special emphasis on soybeans which are is the main commodity produced by Argentina and a main biodiesel source. The influence of NBF on N2 O emissions can be tested using nonnodulating soybean varieties. This study aims to compare and analyse N2 O emissions from nodulating and non-nodulating soybean varieties in order to clarify the actual influence of this commodity on field GHG emissions. Gas samples were collected from closed non-vented chambers. N2 O emissions ranged from -9 to +15 μg N-N2 O m-2 h-1 and only in the last sampling date, values differed significantly between treatments (non-nodulating > nodulating soybean). N2 O emissions were positively related with soil N-NO3 concentration and soil water-filled pore space (WFPS). Results show that in this field study, NBF caused only a slight impact on N2 O emissions. These results agree with the latest IPCC guidelines in 2006 for GHG inventories.Fil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brutti, Lucrecia Noemí. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Civeira, Gabriela. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Efectos del fuego en la matriz del suelo : consecuencias sobre las propiedades físicas y mineralógicas

    Get PDF
    Los incendios constituyen disturbios de muy diverso origen y variadas implicancias. Además de los efectos sobre la vegetación, los incendios pueden afectar los componentes y las propiedades de los suelos. Las modificaciones en los suelos, a su vez, suelen incrementar los procesos de erosión, de transporte de sedimentos y, como consecuencia de lo anterior, también de inundaciones. La mayor parte de los estudios sobre los impactos edáficos del fuego han tenido como objeto los efectos sobre la materia orgánica y otras propiedades químicas y, en menor medida, los efectos sobre las propiedades físicas y mineralógicas. El propósito de este trabajo ha sido revisar el estado del arte en la literatura sobre estos últimos efectos que han sido menos explorados. Se ha encontrado que la profundidad de suelo afectada, así como la magnitud de los cambios, dependen de la intensidad del fuego y de los umbrales de temperatura de sus componentes orgánicos y minerales. La característica física del suelo más afectada por el fuego es la estructura u organización de agregados. Asimismo, en los suelos quemados se verifican incrementos de la hidrofobicidad. Ambos efectos modifican, a su vez, las propiedades hídricas de los suelos, disminuyendo la infiltración e incrementando los riesgos de erosión. El calentamiento de larga duración a temperaturas elevadas puede generar una microagregación de las partículas minerales, dando como resultado la generación de pseudo-texturas más gruesas en el horizonte superficial. En esas condiciones son afectados los minerales de arcilla, habiéndose verificado la disminución del contenido de caolinita y la transformación de los minerales expandibles. Si bien los estudios son escasos, también se han constatado modificaciones en los oxi-hidróxidos de hierro, incluyendo modificaciones de las propiedades magnéticas en la capa superficial del suelo. Los efectos en los compuestos de hierro pueden generar modificaciones del color del suelo, las que pueden ser indicativas de la intensidad del fuego. Trabajos recientes muestran también la fracturación de granos de la fracción arena como consecuencia de la repetición de incendios de alta temperatura. Esta revisión pone de manifiesto las necesidades de investigación respecto a los efectos del fuego sobre los componentes inorgánicos del suelo, hasta el presente menos tenidos en cuenta. La síntesis realizada muestra resultados a menudo contradictorios entre los distintos trabajos, lo cual obedece a las diferentes propiedades constitutivas de los suelos, los distintos tipos de incendios y a sus múltiples posibilidades de combinación.Fires constitute disturbances of very diverse origin and varied implications. In addition to the effects on vegetation, fires can affect the components and properties of soils. Changes in soils, in turn, tend to increase erosion processes, sediment transport and, as a consequence, floods. Most of the studies on edaphic fire impacts have been focused on the effects on organic matter and other chemical properties and to a lesser extent on the effects on physical and mineralogical properties. The purpose of this work has been to review the state of the art in the literature on the latter effects that have been less explored. It has been found that the soil depth affected, as well as the magnitude of the changes, depend on the fire intensity and the temperature thresholds of its organic and mineral components. The physical characteristic of the soil most affected by fire is the structure or organization of aggregates. Likewise, increases in hydrophobicity occur in burned soils. Both effects modify, in turn, the water properties of the soils, reducing the infiltration and increasing the risks of erosion. Longterm heating at elevated temperatures can lead to microaggregation of the mineral particles, resulting in the generation of coarser pseudo-textures in the surface horizon. Under these conditions, clay minerals are also affected, with a decrease in kaolinite content and transformation of the expandable minerals. Although studies are scarce, modifications have also been observed in iron oxy-hydroxides, including modifications in magnetic properties in the topsoil. Effects on iron compounds may lead to changes in soil color, which may be indicative of fire intensity. Recent works also show the cracking of grains of the sand fraction as a consequence of the repetition of high temperature fires. This review highlights research needs regarding the effects of fire on inorganic soil components, which were less considered up to present. The synthesis carried out often shows contradictory results among the different works, which is due to the different constitutive properties of the soils, the different types of fires and their multiple combination possibilitiesInstituto de SuelosFil: Minervini, Mariana Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morras, Hector. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Taboada, Miguel Angel. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore