7 research outputs found

    Influence of Minor Alloying Element Additions on the Crack Susceptibility of a Nickel Based Superalloy Manufactured by LPBF

    Get PDF
    Inconel 738LC (IN738LC) is a nickel-based superalloy specially used in the hot section components of turbine engines. One of its main drawbacks relies on the cracking susceptibility when it is manufactured by laser powder bed fusion (LPBF). This paper analyzes the influence of minor alloying element concentration on cracking tendency of IN738LC superalloy manufactured by LPBF. For that objective, samples were manufactured using two powders, which presented different minor alloying elements concentration (Si, Zr and B). It was shown that the samples crack tendency was very different depending on the powder used for their manufacturing. In fact, the measured crack density value was 2.73 mm/mm2 for the samples manufactured with the powder with higher minor alloying elements concentration, while 0.25 mm/mm2 for the others. Additionally, a special emphasis has been put on elemental composition characterization in cracked grain boundaries in order to quantify possible Si or Zr enrichment. It has been also studied the differences of solidification ranges and grain structures between both samples as a consequence of different minor alloying elements concentration in order to analyze their effect on crack susceptibility. In this sense, Scheil-Gulliver simulation results have shown that samples with higher Si and Zr contents presented higher solidification range temperature. This fact, as well as an increase of the presence of high angle grain boundaries (HAGB), leaded to an increment in the crack formation during solidification. Therefore, in this research work, an understanding of the factors affecting crack phenomenon in the LPBF manufactured IN738LC was accomplished.This research was funded by the Elkartek Programme, Grant Number KK-2020/00042

    Substructure Development and Damage Initiation in a Carbide-Free Bainitic Steel upon Tensile Test

    No full text
    Carbide-free bainitic (CFB) steels belong to the family of advanced high strength steels (AHSS) that are struggling to become part of the third-generation steels to be marketed for the automotive industry. The combined effects of the bainitic matrix and the retained austenite confers a significant strength with a remarkable ductility to these steels. However, CFB steels usually show much more complex microstructures that also contain MA (Martensite–Austenite) phase and auto-tempered martensite (ATM). These phases may compromise the ductility of CFB steels. The present work analyzes the substructure evolution during tensile tests in the necking zone, and deepens into the void and crack formation mechanisms and their relationship with the local microstructure. The combination of FEG-SEM imaging, EBSD, and X-ray diffraction has been necessary to characterize the substructure development and damage initiation. The bainite matrix has shown great ductility through the generation of high angle grain boundaries and/or large orientation gradients around voids, which are usually found close to the bainite and MA/auto-tempered martensite interfaces or fragmenting the MA phase. Special attention has been paid to the stability of the retained austenite (RA) during the test, which may eventually be transformed into martensite (Transformation Induced Plasticity, or TRIP effect)

    Influence of the Chemical Composition on the Solidification Path, Strengthening Mechanisms and Hardness of Ni-Cr-Si-Fe-B Self-Fluxing Alloys Obtained by Laser-Directed Energy Deposition

    No full text
    Nickel-based Ni-Cr-Si-B self-fluxing alloys are excellent candidates to replace cobalt-based alloys in aeronautical components. In this work, metal additive manufacturing by directed energy deposition using a laser beam (DED-LB, also known as LMD) and gas-atomized powders as a material feedstock is presented as a potential manufacturing route for the complex processing of these alloys. This research deals with the advanced material characterization of these alloys obtained by LMD and the study and understanding of their solidification paths and strengthening mechanisms. The as-built microstructure, the Vickers hardness at room temperature and at high temperatures, the nanoindentation hardness and elastic modulus of the main phases and precipitates, and the strengthening mechanisms were studied in bulk cylinders manufactured under different chemical composition grades and DED-LB/p process parameter sets (slow, normal, and fast deposition speeds), with the aim of determining the influence of the chemical composition in commercial Ni-Cr-Si-Fe-B alloys. The hardening of Ni-Cr-Si-Fe-B alloys obtained by LMD is a combination of the solid solution hardening of gamma nickel dendrites and eutectics and the contribution of the precipitation hardening of small chromium-rich carbides and hard borides evenly distributed in the as-built microstructure

    Analysis of Microstructure and Mechanical Properties in As-Built/As-Cast and Heat-Treated Conditions for IN718 Alloy Obtained by Selective Laser Melting and Investment Casting Processes

    No full text
    In this work, new customized heat treatments for selective laser melted (SLM) parts in IN718 alloy were analyzed. This was done through the evaluation of the mechanical properties and advanced characterization of the phases and microstructure obtained in as-built condition and after the application of standard and tailored heat treatments. The microstructure and mechanical properties were compared and discussed with results reported in the literature. Finally, strengthening mechanisms of IN718 alloy processed by SLM and its differences with mechanisms that occur in investment casting were analyzed. Both processes generate quite different microstructures, investment casting is composed mainly by a dendritic structure, and SLM is characterized by columnar and cellular structures with very thin cells. Due to the fine and homogeneous microstructure obtained from SLM processing and its specific strengthening mechanisms, it is not necessary to apply homogenization and solution stages as in standard heat treatment used for this type of alloy in casting or wrought. The pre-heating and process parameters selected, in combination with a direct stepped aging (at 720 °C/620 °C), provide the material with its best mechanical properties, which are superior to those obtained by standard heat treatment (AMS 5383F) applied to investment casting of IN718 alloy

    Strain rate dependent dynamic mechanical response of bainitic multiphase steels

    No full text
    Bainitic steels, as a third generation of advanced high strength steels, are potential steel grades for automotive applications. Two grades of bainitic steels with low and high silicon content, with three different thermal treatments per grade and therefore different second phase constituents, are examined under quasi-static and high strain rate deformations. Microstructures are studied by advanced characterization techniques, including X-ray diffraction and scanning electron microscope equipped with an electron backscatter diffraction detector. Subsequently, the quasi-static and dynamic mechanical responses of the steels are correlated to the microstructures. A positive effect of the strain rate is observed for all the examined materials: when the strain rate is increased, both the tensile stress and deformation levels increase, thus also the energy absorption capacity. However, it is shown that the higher the fraction of second phase constituents, the lower the effect of strain rate becomes. In addition, the grain size directly correlates to the strain rate effect too. The phenomenological hardening model of Johnson-Cook is used to simulate the quasi-static and dynamic flow behaviors, allowing to quantify the strain rate sensitivity for each material. A comprehensive literature survey on the strain rate sensitivity of various steel grades reveals that steels with higher strength demonstrate a lower strain rate sensitivity factor. This trend can be approximated by a power law function which clearly is followed by the materials under consideration in this study

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore