25 research outputs found

    Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs

    Get PDF
    Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.http://www.sciencedirect.com/science/article/B6SYS-4S50K2J-1/1/7d11c902193bfa3f1f57030572f7034

    Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment

    Get PDF
    Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are benefi- cial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the pro- duction of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant pro- duction, with emphasis on three key performanceindicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A dis- tinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production

    Phosphotransfer reactions of the three-protein CbbRRS two-component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase.

    No full text
    The CbbRRS system is an atypical three-protein two-component system that modulates the expression of the cbb(1) CO2 fixation operon of Rhodopseudomonas palustris, possibly in response to a redox signal. It consists of a membrane-bound hybrid sensor kinase, CbbSR, with a transmitter and receiver domain, and two response regulator proteins, CbbRR1 and CbbRR2. No detectable helix-turn-helix DNA binding domain is associated with either response regulator, but an HPt domain and a second receiver domain are predicted at the C-terminal region of CbbRR1 and CbbRR2, respectively. The abundance of conserved residues predicted to participate in a His-Asp phosphorelay raised the question of their de facto involvement. In this study, the role of the multiple receiver domains was elucidated in vitro by generating site-directed mutants of the putative conserved residues. Distinct phosphorylation patterns were obtained with two truncated versions of the hybrid sensor kinase, CbbSR(T189). and CbbSR(R96) (CbbSR beginning at residues T189 and R96, respectively). These constructs also exhibited substantially different affinities for ATP and phosphorylation stability, which was found to be dependent on a conserved Asp residue (Asp-696) within the kinase receiver domain. Asp-696 also played an important role in defining the specificity of phosphorylation for response regulators CbbRR1 or CbbRR2, and this residue appeared to act in conjunction with residues within the region from Arg-96 to Thr-189 at the N terminus of the sensor kinase. The net effect of concerted interactions at these distinct regions of CbbSR created an internal molecular switch that appears to coordinate a unique branched phosphorelay system
    corecore