27 research outputs found

    Reduced mechanical efficiency in left-ventricular trabeculae of the spontaneously hypertensive rat.

    Get PDF
    Long-term systemic arterial hypertension, and its associated compensatory response of left-ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left-ventricular trabeculae from SHR-F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR-NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR-F differed little from that of the SHR-NF, both SHR groups performed less stress-length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca(2+) cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension-induced left-ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced

    Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar)

    Get PDF
    Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes

    Signal transduction controls heterogeneous NF-ÎșB dynamics and target gene expression through cytokine-specific refractory states

    Get PDF
    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-ÎșB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-ÎșB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1ÎČ instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-ÎșB-dependent target gene activation. These data suggest that refractory states in the NF-ÎșB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation

    A compilation of global bio-optical in situ data for ocean colour satellite applications – version three

    Get PDF
    A global in situ data set for validation of ocean colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprises in situ observations of the following variables: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient, and total suspended matter. Data were obtained from multi-project archives acquired via open internet services or from individual projects acquired directly from data providers. Methodologies were implemented for homogenization, quality control, and merging of all data. Minimal changes were made on the original data, other than conversion to a standard format, elimination of some points, after quality control and averaging of observations that were close in time and space. The result is a merged table available in text format. Overall, the size of the data set grew with 148 432 rows, with each row representing a unique station in space and time (cf. 136 250 rows in previous version; Valente et al., 2019). Observations of remote-sensing reflectance increased to 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There was also a near tenfold increase in chlorophyll data since 2016. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) are included in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. The compiled data are available at https://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022)

    Comodulation Masking Release Determined in the Mouse (Mus musculus) using a Flanking-band Paradigm

    No full text
    Comodulation masking release (CMR) has been attributed to auditory processing within one auditory channel (within-channel cues) and/or across several auditory channels (across-channel cues). The present flanking-band (FB) experiment—using a 25-Hz-wide on-frequency noise masker (OFM) centered at the signal frequency of 10 kHz and a single 25-Hz-wide noise FB—was designed to separate the amount of CMR due to within- and across-channel cues and to investigate the role of temporal cues on the size of within-channel CMR. The results demonstrated within-channel CMR in the Naval Medical Research Institute mouse, while no unambiguous evidence could be found for CMR occurring due to across-channel processing (i.e., “true CMR”). The amount of within-channel CMR was dependent on the frequency separation between the FB and the OFM. CMR increased from 4 to 6 dB for a frequency separation of 1 kHz to 18 dB for a frequency separation of 100 Hz. The large increase for a frequency separation of 100 Hz is likely to be due to the exploitation of changes in the temporal pattern of the stimulus upon the addition of the signal. Temporal interaction between both masker bands results in modulations with a large depth at a modulation frequency equal to the beating rate. Adding a signal to the maskers reduces the depth of the modulation. The auditory system of mice might be able to use the change in modulation depth at a beating frequency of 100 Hz as a cue for signal detection, while being unable to detect changes in modulation depth at high modulation frequencies. These results are consistent with other experiments and model predictions for CMR in humans which suggested that the main contribution to the CMR effect stems from processing of within-channel cues
    corecore