210 research outputs found

    Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package dti

    Get PDF
    Diffusion weighted imaging has become and will certainly continue to be an important tool in medical research and diagnostics. Data obtained with diffusion weighted imaging are characterized by a high noise level. Thus, estimation of quantities like anisotropy indices or the main diffusion direction may be significantly compromised by noise in clinical or neuroscience applications. Here, we present a new package dti for R, which provides functions for the analysis of diffusion weighted data within the diffusion tensor model. This includes smoothing by a recently proposed structural adaptive smoothing procedure based on the propagation-separation approach in the context of the widely used diffusion tensor model. We extend the procedure and show, how a correction for Rician bias can be incorporated. We use a heteroscedastic nonlinear regression model to estimate the diffusion tensor. The smoothing procedure naturally adapts to different structures of different size and thus avoids oversmoothing edges and fine structures. We illustrate the usage and capabilities of the package through some examples.

    Adaptive Smoothing of Digital Images: The R Package adimpro

    Get PDF
    Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagationseparation approach by (Polzehl and Spokoiny 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples.

    Criticality in quark-gluon systems far beyond thermal and chemical equilibrium

    Full text link
    Experimental evidence and theoretical arguments for the existence of self-organized criticality in systems of gluons and quarks are presented. It is observed that the existing data for high-transverse-momentum jet-production exhibit striking regularities; and it is shown that, together with first-principle considerations, such regularities can be used, not only to probe the possible compositness of quarks, but also to obtain {\em direct evidence} for, or against, the existence of critical temperature and/or critical chemical potential in quark-gluon systems when hadrons are squeezed together.Comment: 13 pages, including 1 figure and 1 tabl

    Adaptive Smoothing of Digital Images: The R Package adimpro

    Get PDF
    Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagationseparation approach by (Polzehl and Spokoiny 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples

    Statistical parametric maps for functional MRI experiments in R: The package fmri

    Get PDF
    The package fmri is provided for analysis of single run functional Magnetic Resonance Imaging data. It implements structural adaptive smoothing methods with signal detection for adaptive noise reduction which avoids blurring of edges of activation areas. fmri provides fmri analysis from time series modeling to signal detection and publication-ready images

    Beyond the Gaussian Model in Diffusion-Weighted Imaging: The Package dti

    Get PDF
    Diffusion weighted imaging (DWI) is a magnetic resonance (MR) based method to investigate water diffusion in tissue like the human brain. Inference focuses on integral properties of the tissue microstructure. The acquired data are usually modeled using the diffusion tensor model, a three-dimensional Gaussian model for the diffusion process. Since the homogeneity assumption behind this model is not valid in large portion of the brain voxel more sophisticated approaches have been developed. This paper describes the R package dti. The package offers capabilities for the analysis of diffusion weighted MR experiments. Here, we focus on recent extensions of the package, for example models for high angular resolution diffusion weighted imaging (HARDI) data, including Q-ball imaging and tensor mixture models, and fiber tracking. We provide a detailed description of the package structure and functionality. Examples are used to guide the reader through a typical analysis using the package. Data sets and R scripts used are available as electronic supplements

    Mathematical models: A research data category?

    Get PDF
    Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines and application areas. It is common to categorize the involved numerical data and to some extend the corresponding scientific software as research data. Both have their origin in mathematical models. In this contribution we propose a holistic approach to research data in MMS by including the mathematical models and discuss the initial requirements for a conceptual data model for this field
    corecore