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Abstract

Diffusion weighted imaging (DWI) is a magnetic resonance (MR) based method to
investigate water diffusion in tissue like the human brain. Inference focuses on integral
properties of the tissue microstructure. The acquired data are usually modeled using
the diffusion tensor model, a three-dimensional Gaussian model for the diffusion process.
Since the homogeneity assumption behind this model is not valid in large portion of the
brain voxel more sophisticated approaches have been developed.

This paper describes the R package dti. The package offers capabilities for the analysis
of diffusion weighted MR experiments. Here, we focus on recent extensions of the package,
for example models for high angular resolution diffusion weighted imaging (HARDI) data,
including Q-ball imaging and tensor mixture models, and fiber tracking. We provide a
detailed description of the package structure and functionality. Examples are used to
guide the reader through a typical analysis using the package. Data sets and R scripts
used are available as electronic supplements.

Keywords: diffusion weighted imaging, high angular resolution, orientation distribution func-
tion, Q-ball imaging, angular central Gaussian distribution, tensor mixture model, order
selection.

1. Introduction

The basic principles of diffusion weighted imaging (DWI) have been introduced in the 1980’s
(Le Bihan and Breton 1985; Merboldt et al. 1985; Taylor and Bushell 1985). Since then it has
evolved into a beneficial technique for in-vivo investigation of tissue micro-structure in the
human brain (Le Bihan et al. 2001), spinal cord (Clark et al. 1999) and muscle tissue (Sinha
et al. 2006) as it probes microscopic structures well beyond typical image resolutions through
water molecule displacement. Diffusion weighted data is usually measured using the pulsed
gradient spin echo sequence (PGSE, Stejskal and Tanner 1965) with a number of specified
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magnetic field gradients in different directions ~q. Due to diffusion in tissue this signal S(~q)
is attenuated compared to the signal S0 acquired without diffusion gradient application. For
a recent discussion of the physics of image acquisition, relations to white matter anatomy,
clinical use and problems in neuroscience that can be addressed by DWI we refer to Johansen-
Berg and Behrens (2009). A good introduction into the basic principles of magnetic resonance
imaging is given in Callaghan (1991). Requirements on DTI acquisition schemes are discussed
e.g., in Smith et al. (2007).

In this paper we discuss the modeling and analysis of single subject DWI data after image
reconstruction using the package dti (Tabelow and Polzehl 2011) for the R environment for
statistical computing (R Development Core Team 2011). An earlier version (0.6-0) of the
package that was restricted to diffusion tensor imaging (DTI) and adaptive smoothing for
DTI (Tabelow et al. 2008) has been described in Polzehl and Tabelow (2009).

The focus of this paper is on models for estimating the orientation distribution function
(ODF), see Tuch et al. (2002); Wedeen et al. (2005); Aganj et al. (2010) and Barnett (2009),
that overcome the limitations of the tensor model. Such models are of special interest for
high angular resolution diffusion weighted imaging (HARDI) data. Section 2.2 briefly reviews
the diffusion tensor model and discusses its limitations. We then introduce both Q-ball imag-
ing (Tuch 2004; Anderson 2005; Hess et al. 2006; Descoteaux et al. 2007) and tensor mixture
models (Tuch 2002; Tournier et al. 2004; Alexander 2005; Özarslan et al. 2006; Alexander
2006; Behrens et al. 2007; Leow et al. 2009; Tabelow et al. 2011b). Section 4 introduces the
design of the package and uses several examples to illustrate a typical data analysis. Data
sets and R scripts are provided in electronic form.

2. Modeling diffusion weighted data

2.1. The diffusion weighted signal

DWI effectively measures the diffusion of water molecules in a direction determined by external
magnetic field gradients. Let P (~r, ~r ′, τ) denote the probability density for a particle (spin)
to diffuse from position ~r ′ to ~r in time τ . With DWI an aggregate value of P over a volume
(voxel) V can be determined,

P (~R, τ) =

∫
~r ′∈V, ~R=~r−~r ′

P (~r, ~r ′, τ)p(~r ′)d~r ′, (1)

where p(~r ′) is the initial probability density of the location of the particles. A voxel is
typically of a size of about 1 − 8 mm3. The relation to the normalized diffusion weighted
signal E(~q, τ) = S(~q, τ)/S0, is given by the three-dimensional Fourier transform F and its
inverse:

P (~R, τ) =

∫
R3

E(~q, τ) e−2πi~q
~Rd~q = F(E(~q, τ)),

E(~q, τ) =

∫
R3

P (~R, τ) e2πi~q
~Rd~R = F−1(P (~q, τ)). (2)

Figure 1 provides a snapshot of a three dimensional data visualization generated by
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Figure 1: 3D Data visualization for a row of four voxel in the artificial tensor data using
the package rgl (Adler and Murdoch 2010). For each voxel the values E(~q, τ) are coded as
distances to voxel centers. Diffusion gradients are characterized by their spherical coordinate
directions and additional color coding using red for left-right, green for anterior-posterior and
blue for inferior-superior directions.

R> library("dti")

R> data("optgradients")

R> gradients <- cbind(matrix(0, 3, 1), optgrad[[16]])

R> dwiobj <- readDWIdata(gradients, "data3", "NIFTI")

R> show3d(dwiobj[26:30, 26, 15], bg = "white", what = "data")

R> rgl.snapshot("dwidata.png")

Within a DWI experiment ngrad diffusion weighted images S(~qi, τ) and at least one image S0
without application of a diffusion gradient are acquired (Smith et al. 2007).

2.2. The diffusion tensor model

Assuming homogeneity of tissue within a voxel the diffusion tensor model is derived for the
special case of Gaussian diffusion1, that is fully characterized by a three dimensional tensor D,

P (~R, τ) = P (r~u, τ) =
1√

detD(4πτ)3
exp

(
−r2~u

>D−1~u
4τ

)
.

Equation 2 can then be expressed as

E(~q, τ) = E(q~u, τ) = e−b~u
>D~u,

with the b value depending on q and the effective diffusion time τ (Basser et al. 1994a). Within
this model diffusion is completely characterized by the positive definite symmetric 3×3 matrix
D, the diffusion tensor. For simplicity of notation we henceforth omit the diffusion time τ .

The components of the diffusion tensor clearly depend on the orientation of the object in the
scanner frame. Rotationally invariant quantities derived from the diffusion tensor circumvent

1Free diffusion is usually isotropic except in some liquid crystals. However, the Gaussian model of anisotropic
diffusion can be considered as the low spatial frequency approximation to the diffusion propagator in case of
restricted diffusion (Tuch et al. 2002).
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this dependence and are usually used for further analysis, mainly based on the eigenvalues
λi (i = 1, 2, 3) of D with λi > 0 for positive definite tensors (Basser and Jones 2002). The
eigenvector ~e1 corresponding to the principal eigenvalue λ1 determines the main diffusion
direction used for fiber tracking.

The simplest quantity based on the eigenvalues is the trace of the diffusion tensor Tr(D) =∑3
i=1 λi which is related to the mean diffusivity 〈λ〉 = Tr(D)/3. The anisotropy of the

diffusion can be described using higher moments of the eigenvalues λi. The widely used
fractional anisotropy (FA) is defined as

FA =

√
3

2

√√√√ 3∑
i=1

(λi − 〈λ〉)2 /
3∑
i=1

λ2i ,

with 0 ≤ FA ≤ 1, where FA = 0 indicates equal eigenvalues and hence isotropic diffusion.

The resulting FA-maps together with a color-coding scheme are used for visualization and
interpretation. Clinical use focuses on diagnostics of neuronal disease, see e.g., Kellinghaus
et al. (2006); Kleffner et al. (2008); Deppe et al. (2008); Duning et al. (2010). The principal
eigenvector ~e1 = (e1x, e1y, e1z) is used for assigning each voxel a specific color, interpreting
e1x, e1y, and e1z weighted with the value FA as red (left-right), green (anterior-posterior),
and blue (inferior-superior) contribution

(R,G,B) = (|e1x|, |e1y|, |e1z|) · FA . (3)

Note, that in contrast to the eigenvalues and the FA the principal eigenvector, and hence the
color coding, depends on the orientation of the object in the scanner frame.

The main problem of the diffusion tensor model arises from the assumption of tissue homo-
geneity within a voxel. DWI aims to detect structures with an extension of up to 15 cm and
a diameter of about 30µm. A high percentage of voxels contain structures with different
orientations. In such a situation partial volume effects may lead to invalid or non-informative
tensor estimates.

2.3. The orientation distribution function

The drawbacks of the diffusion tensor model may be avoided by a more detailed analysis of
Equation 1. The main concern in DWI is to access properties of the tissue like neuronal fiber
bundles. A special interest is in the orientation properties of the probability distribution P
(its projection onto the unit sphere S2)

ODF(~u) =

∫ ∞
0

r2P (r~u)dr, (4)

with ~R = r~u and ~u ∈ S2 and neglecting the dependence on τ . Equation 4 is the orientation
distribution function (ODF) as proposed in Wedeen et al. (2005) and used in Aganj et al.
(2010). For a detailed discussion on how this differs from the original definition of Tuch et al.
(2002) see Barnett (2009). This definition is intrinsically normalized∫

S2
ODF(~u)d~u = 1,
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and defines a probability distribution on the sphere S2.
In case of elliptically symmetric distributions P (~R, τ) = Cτ (detD)−1/2hτ (~R>D−1 ~R) with zero
mean, a three dimensional tensor D as shape parameter, some function hτ and a normalization
constant Cτ the ODF is given by

ODF(~u) =
1

4π
√

detD

(
~u>D−1~u

)−3/2
,

(see Tabelow et al. 2011b). This is known as the angular central Gaussian distribution on the
sphere (Mardia and Jupp 2000). One example for an elliptically symmetric distribution P is
the anisotropic Gaussian diffusion assumed for the tensor model.

Using spherical coordinates ~q = q~u = (q, θ, φ) and inserting (2) into (4) the orientation
distribution function may be expressed as a function of the signal E(~q):

ODF(~u) =
1

4π
− 1

8π2

∫ 2π

0

∫ ∞
0

1

q
∇2
bE(~q)dqdφ

∇2
bE =

1

sin θ

δ

δθ

(
sin θ

δE

δθ

)
+

1

sin2 θ

δE

δφ2

where ∇2
b is the Laplace-Beltrami operator (Aganj et al. 2010).

2.4. Q-ball imaging

Q-ball imaging (QBI, Tuch 2004) aims at the reconstruction of the ODF from signals E(~q0)
measured on one q-shell, i.e., for one fixed b value corresponding to the value q0. This is in
contrast to alternative methods like diffusion spectrum imaging (DSI, Wedeen et al. 2005) or
hybrid diffusion imaging (HYDI, Wu and Alexander 2007) which measure diffusion weighted
images on a Cartesian grid of diffusion gradients or sample gradients from spheres with dif-
ferent b values, respectively. Both methods effectively require significantly more diffusion
weighted images.

QBI requires an extrapolation of the signal E(~q) to other locations in q-space in order to eval-
uate the integral over q. Here, we use the formulation of QBI as in Aganj et al. (2010) which
differs from the original proposal by Tuch (2004) by the r2 weighting factor in the definition
of the ODF. The extrapolation of E(~q0) is performed by assuming a mono-exponential decay
of the signal in q

E(q~u) = E(q0~u)(q/q0)
2
.

Under this assumption the ODF may be expressed as

ODF(~u) =
1

4π
+

1

16π2
FRT{∇2

b ln(− lnE(~u))},

where

FRT(f(~u)) =

∫∫
~u⊥
f(~w)δ(|~w| − 1)d~w

denotes the Funk-Radon transformation (Aganj et al. 2010).

Efficient implementations of QBI make use of the spherical harmonic basis functions Y m
k (~u),

particularly in the form of the a symmetric modified basis. For selected maximum order l,
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Figure 2: True ODF and expected reconstruction by spherical harmonics expansion of order
2, 4, 6 and 8 (from left to right) for a voxel with tree mixture components.

even order k ≤ l, and −k ≤ m ≤ k we define an index j = k(k + 1)/2 + m + 1 and a real
function

Yj(~u) =


√

2<(Y m
k (~u)) −k ≤ m < 0;

Y 0
k (~u) m = 0;√
2=(Y m

k (~u)) 0 < m ≤ k;

using the real part <(Y m
k (~u)) and the imaginary part =(Y m

k (~u)) of Y m
k (~u) (Descoteaux et al.

2007). The spherical harmonics Yj are eigenfunctions of the Laplace-Beltrami operator, i.e.,
∇2
bYj(~u) = −kj(kj+1)Yj(~u), where kj is the order associated with j. The use of the expansion

ln(− ln(E(~u))) ≈
N∑
j=1

cjYj(~u), N = (l + 1)(l + 2)/2, (5)

leads to an approximation of the ODF by

ODF(~u) ≈ 1

4π
− 1

8π

N∑
j=1

cjkj(kj + 1)Pkj (0)Yj(~u) (6)

where Pkj are the Legendre polynomials of order kj (Aganj et al. 2010). Estimation of the
ODF is now a linear problem where estimates of the parameters cj , j = 1, . . . , N are obtained
from the observed noisy signals E(~ui) = S(~qi)/S0, i = 1, . . . , ngrad by solving the regularized
least squares problem (Descoteaux et al. 2007; Aganj et al. 2010)

min
(c1,...,cN )

ngrad∑
i=1

ln(− ln(E(~ui)))−
N∑
j=1

cjYj(~u)

2

+ λreg

N∑
j=1

c2jk
2
j (k

2
j + 1).

Regularization is used to reduce the variability of the estimated ODF, with the parameter λreg
effectively determining a balance between variance and bias of the estimated ODF. Figure 2
illustrates effects of ODF reconstruction by spherical harmonic expansions for a voxel where
the true ODF is a mixture of three angular central Gaussian distributions. Reconstruction
was based on 136 gradient directions in a noise-free situation. Figure 2 is generated using the
following script.

R> data("optgradients")

R> gradients <- cbind(matrix(0, 3, 7), optgrad[[131]])

R> dwiobj <- readDWIdata(gradients, "data4a", "NIFTI")
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R> mixtens3 <- dwiMixtensor(dwiobj[5, 5, 5], maxcomp = 5, pen = 1)

R> qballobj2 <- dwiQball(dwiobj[5, 5, 5], order = 2, lambda = 0)

R> qballobj4 <- dwiQball(dwiobj[5, 5, 5], order = 4, lambda = 0)

R> qballobj6 <- dwiQball(dwiobj[5, 5, 5], order = 6, lambda = 0)

R> qballobj8 <- dwiQball(dwiobj[5, 5, 5], order = 8, lambda = 0)

R> source(system.file("rcode/mousecallbacks.r", package = "dti"))

R> sx <- 320

R> sy <- 320

R> w1 <- show3d(mixtens3, subdivide = 4, FOV = 1,

+ windowRect = c(1, 1, sx, sy))

R> w2 <- show3d(qballobj2, subdivide = 4, FOV = 1,

+ windowRect = c(sx + 11, 1, 2 * sx + 10, sy))

R> w3 <- show3d(qballobj4, subdivide = 4, FOV = 1,

+ windowRect = c(2 * sx + 21, 1, 3 * sx + 20, sy))

R> w4 <- show3d(qballobj6, subdivide = 4, FOV = 1,

+ windowRect = c(3 * sx + 31, 1, 4 * sx + 30, sy))

R> w5 <- show3d(qballobj8, subdivide = 4, FOV = 1,

+ windowRect = c(4 * sx + 41, 1, 5 * sx + 40, sy))

R> mouseTrackball(dev = c(w1, w2, w3, w4, w5))

R> mouseZoom(2, dev = c(w1, w2, w3, w4, w5))

R> mouseFOV(3, dev = c(w1, w2, w3, w4, w5))

R> cat("w1 - true ODF \n

+ w2 - Expected ODF estimate by SH approximation order 2, no regularization\n

+ w3 - Expected ODF estimate by SH approximation order 4, no regularization\n

+ w4 - Expected ODF estimate by SH approximation order 6, no regularization\n

+ w5 - Expected ODF estimate by SH approximation order 8, no regularization\n

+ You may now rotate the data using your mouse")

R> rgl.set(w1)

R> rgl.snapshot("truemix3.png")

R> rgl.set(w2)

R> rgl.snapshot("ExpectedODF2.png")

R> rgl.set(w3)

R> rgl.snapshot("ExpectedODF4.png")

R> rgl.set(w4)

R> rgl.snapshot("ExpectedODF6.png")

R> rgl.set(w5)

R> rgl.snapshot("ExpectedODF8.png")

Note, that ODF reconstruction by function dwiQball requires the package gsl (Hankin 2006).

2.5. Tensor mixture models

Although the estimation of the ODF by spherical harmonics expansion of the observed signal is
computationally appealing it also has several drawbacks. The form of the ODF reconstruction
depends on the order l of the approximation and the regularization parameter λreg. The
approximation by orthogonal basis functions aims for a minimal mean squared error of the
density estimates and may lead to a bias in the location of the maxima of the estimated ODF.
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Finally, in the case of QBI, the result depends on the assumption of a mono-exponential decay
of the signal E with q. One may therefore consider alternative models for DWI.

Let us assume a voxel to contain M compartments covering a fraction wm of the voxel such
that

∑M
m=1wm = 1 and anisotropic Gaussian diffusion characterized by the tensor Dm in com-

partment m, m = 1, . . . ,M . This leads to a signal that does not exhibit a mono-exponential
decay but instead satisfies

E(~q) =
M∑
m=1

wm exp(−b~u>Dm~u). (7)

The corresponding ODF is a mixture of the ODF’s for the compartments

ODF(~u) =
M∑
m=1

wm
1

4π
√

detDm

(
~u>D−1m ~u

)−3/2
.

This additivity of the ODF is not preserved when using Equations 5 and 6 due to the non-
linearity of the operators ln(− ln(·)).
The mixture model of M diffusion tensors Dm in its general form (7) is too flexible, leading to
severe identifiability and numerical problems (Tuch 2002; Johansen-Berg and Behrens 2009).
Suggestions to resolve the problem include the restriction of the number of components to
M = 2 (Alexander 2005, 2006; Özarslan et al. 2006), the approximation of the solution by
estimating the ODF spherical harmonics expansion and subsequent deconvolution (Tournier
et al. 2004) or the use of restrictions for the tensor eigenvalues (Leow et al. 2009).

In Tabelow et al. (2011b) we show that a reduction of the complexity of the model 7 accom-
panied by model selection using BIC (Schwarz 1978) is practical. We assume the diffusion
tensors Dm to have a spectral decomposition Dm = λ1~dm~d

>
m + λ2(I3 − ~dm~d

>
m), i.e. to be

prolate (λ1 > λ2 = λ3, Basser et al. 1994b) and to differ only in their main direction ~dm.
After re-parameterization the reduced model has the form

E(~q) =
M∑
m=1

w̃m exp(−bϑ(~q>~dm)2), w̃m ≥ 0,
M∑
m=1

w̃m < 1, ϑ ≥ 0, (8)

with

λ2 = −1

b
log

M∑
m=1

w̃m, λ1 = ϑ+ λ2 and wm = w̃m/
M∑
l=1

w̃l.

With ~dm = (sin(φm) cos(ηm), sin(φm) sin(ηm), cos(φm))> the model has 2M + 1 nonlinear
parameters and M linear parameters with constraints. Estimation in model 8 still requires
to solve a non-convex optimization problem and the use of suitable initial estimates. For a
detailed description of parameter estimation and a strategy to select the number of mixture
components M we refer to Tabelow et al. (2011b). The tensor mixture model is characterized
by the number of compartments Mopt estimated by BIC, the fractional anisotropy of a prolate
tensor model

FA =
(λ1 − λ2)√
λ21 + 2 · λ22

,
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and, assuming w1 ≥ · · · ≥ wMopt , the effective order

EO =

Mopt∑
m=1

(2m− 1)wm .

The definition of FA is a straightforward generalization from the DTI model. The value of
EO ranges from 1 for w1 = 1 to Mopt in case of equal mixture coefficients wm ≡ 1/Mopt.

In general estimation in model 8 is computationally expensive and may require multiple
starting points in optimization to provide suitable results.

2.6. Fiber tracking

The estimated diffusion tensors and ODF’s may be used to infer the underlying neuronal
fiber structure. This is performed using fiber tracking algorithms on vector fields or tensor
orientation functions extracted from the estimated objects. There exists a large variety of
fiber tracking algorithms that can be roughly classified into deterministic and probabilistic
approaches and are based either on local or global criteria. For an overview of existing
approaches, see e.g., Mori and van Zijl (2002); Behrens et al. (2007); Descoteaux et al. (2009);
Reisert et al. (2011); Wu et al. (2009); Zhang et al. (2009); Aganj et al. (2011). For this paper
we use the deterministic FACT algorithm proposed in Xue et al. (1999); Mori et al. (1999)
and implemented in the dti package.

3. Data sets

With this document we provide four data sets that have been used within the text and may be
used to explore the capabilities of the R package dti. The data are contained in the electronic
appendix of this paper in form of directories containing NIfTI files. The data may be freely
used under the terms of the GPL ≥ 2 license.

MRI images were obtained from a healthy male volunteer in the age group 40 - 45 within
an Institutional Review Board approved research protocol at Weill Cornell Medical College.
Images were acquired on a 3.0 Tesla General Electric Excite MRI scanner using an 8-channel
receive-only head coil. First, a localizer scan was obtained to prescribe the position of the
subsequent DWI scan. For the DWI scan, a single-shot spin-echo echo planar imaging (EPI)
sequence with 10 images without diffusion weighting and 140 diffusion gradient directions,
which were approximately isotropically distributed over the sphere, was used, with an echo and
repetition time of TE = 73.2 ms and TR = 14000 ms, respectively. 66 axial slices were scanned
with no gap and an acquisition matrix size of 128× 128. Images were zero-filled to an image
matrix size of 256 × 256, yielding an effective resolution of 0.898 × 0.898 × 1.800 mm3. The
b value in the diffusion weighted images was 1000 s /mm2, the parallel imaging acceleration
factor was 2, and the total scan time for this scan was 36 min.

Experimental data 1: This data set contains a subset of the DWI data described above. The
data covers parts of the genu of the corpus callosum (GCC), the anterior thalamic radiation
(ATR) and the superior fronto-occipital-fasciculus (SFO).

Data directory: data1

Dimension: 40× 40× 5
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Figure 3: Color-coded FA with location for data cubes of the experimental data set 1 (left) and
the experimental data set 2 (right). Information shown is within slice three of the respective
subsets.

Gradient file: b-directions.txt

Number of gradients ngrad: 140
S0 images: 10

Experimental data 2: This data set contains a subset of the DWI data described above. The
subset contains a contiguous region of tissue where three main directions of diffusion are found
in the tensor mixture model.

Data directory: data2

Dimension: 9× 22× 5
Gradient file: b-directions.txt

Number of gradients ngrad: 140
S0 images: 10

Figure 3 illustrates the position of the subsets in the experimental data set 1 (left) and the
experimental data set 2 (right) using color coded FA maps for slices containing the central
slice within the subsets, respectively.

Artificial tensor data: An artificial data set created by demo("dti_art") with default set-
tings. For this data set the tensor model is adequate.

Data directory: data3

Dimension: 64× 64× 30
Number of gradients ngrad: 21
S0 images: 1
Gradient file: access from package by

R> data("optgradients")

R> gradients <- cbind(matrix(0,3,1), optgrad[[16]])
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Artificial tensor mixture data: An artificial data set created by demo("mixtens_art") with
default settings (except n = 7).

Data directory: data4a (without noise) and data4b (with SNR = 50)
Dimension: 7× 7× 7
Number of gradients ngrad: 136
S0 images: 7
Gradient file: access from package by

R> data("optgradients")

R> gradients <- cbind(matrix(0, 3, 7), optgrad[[131]])

Estimated fiber tracks: This data set contains fiber tracks identified from whole brain data
recorded within an diffusion weighted experiment using a tensor mixture model of maxi-
mal order 3. (The experimental data sets 1 and 2 contain part of data from this experi-
ment.) The data set contains fibers extending over at least 100 voxels. Access data using
load("tracks3_100.rsc").

4. Analyzing DWI data: The R package dti

The R package dti has been designed to perform an analysis of single subject diffusion weighted
imaging data using S4 classes (Chambers 2008). The concept of S4 classes enables the use
of principles from object oriented programming like inheritance, methods and polymorphism
in R. Consistency of the work flow for analyzing DWI data (Figure 4) is guaranteed by well
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Figure 4: Work flow for analyzing DWI data with package dti.
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Class Content ID

dwi Basic class containing data description (1)
dtiData DWI data objects. Extends (1). (2)
dtiTensor Estimated diffusion tensor. Extends (1). (3)
dtiIndices Estimated diffusion tensor indices and orientations. Extends (1). (4)
dwiMixtensor Estimated tensor mixtures. Extends (1). (5)
dwiQball Estimated ODF using spherical harmonics. Extends (1). (6)
dwiFiber Fiber tracking results. Extends (1). (7)

Table 1: Overview of package dti: Classes. A new class inherits the complete structure of the
class that it extends.

Function Purpose Defined for Creates

dtiData Create DWI data from binary image file. (2)
readDWIdata Read DWI data using capabilities of fmri. (2)
sdpar Threshold selection and variance parameters. (2) (2)
tensor2medinria Write tensor estimates as NIfTI. (3)
medinria2tensor Read tensor estimates from NIfTI. (3)

Table 2: Overview of package dti: Functions.

Method Purpose Defined for Creates

dtiTensor Compute diffusion tensor estimates. (2) (3)
dti.smooth Adaptive smoothing for DTI. (2) (3)
dtiIndices Compute diffusion tensor characteristics. (3) (4)
dwiQball Q-ball imaging using spherical harmonics. (2) (6)
dwiMixtensor Estimate tensor mixtures. (2) (5)
dwiMtImprove Improve estimated tensor mixtures. (5)(2) (5)
dwiMtCombine Combine estimated tensor mixtures. (5)(5) (5)
tracking Streamline fiber tracking. (3,4,5) (7)
selectFibers Select subset of fiber tracks. (7) (7)
reduceFibers Remove redundant fiber tracks. (7) (7)
extract Extract information or components. (2,3,4,5,6)
[ Index operations. (2,3,4,5,6) (2,3,4,5,6)
summary Summarize information. (2,3,4,5,6,7)
plot Plot method. (2,3,4,5,7)
show Object descriptions. (2,3,4,5,6,7)
print Object descriptions. (2,3,4,5,6,7)
show3d 3D visualization of objects. (2,3,4,5,6,7)

Table 3: Overview of package dti: Methods.

defined data structures and methods. Table 1 provides an overview of currently implemented
classes. Table 2 lists the available functions and the classes of objects they generate. Table 3
gives a list of available methods and the respective classes of objects they act on and create. An
extract method is provided to access specific information from the S4-objects, see Example 4.3.
The information to extract is specified by an argument what. For detailed information we
refer to the documentation of the package. The use of the package in DTI and our approach to
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adaptive smoothing within this context is described in detail in Polzehl and Tabelow (2009);
Tabelow et al. (2008).

Information on the package and its classes and methods is obtained within an R session by

R> help(dti)

R> class?class-name

R> methods?method-name

The package includes two data sets: "polyeder" contains a description of regular polyhedra
that are refinements of the icosahedron and are used for visualization and "optgradients"

contains sets of optimal gradient directions.

Currently there are two comprehensive demos, demo("dti_art") for modeling within the
context of the diffusion tensor model and demo("mixtens_art") illustrating the work flow
for analyzing HARDI data. In both demos a variety of configurations may be specified both
concerning underlying true fiber structures as well as the number of gradients and signal-to-
noise ratio (SNR).

4.1. Example: Tensor estimates

To illustrate the capabilities of the package in DTI in an adequate situation we use the
artificial tensor data. The true structure has, in the anisotropic parts, main eigenvectors of
the diffusion tensors along circular bands, and in the center, in vertical direction. Voxel-wise
tensor estimates are obtained without and with structural adaptive smoothing (Tabelow et al.
2008; Polzehl and Tabelow 2009) using a maximal bandwidth of 4. Tensor characteristics are
computed and fiber tracking is performed.

R> data("optgradients")

R> gradients <- cbind(matrix(0, 3, 1), optgrad[[16]])

R> dwiobj <- readDWIdata(gradients, "data3", "NIFTI")

R> dwiobj <- sdpar(dwiobj, 100)

R> dtiobj <- dtiTensor(dwiobj)

R> dtiind <- dtiIndices(dtiobj)

R> dtiobj.smooth <- dti.smooth(dwiobj, hmax = 4)

R> dtiind.smooth <- dtiIndices(dtiobj.smooth)

R> tracks <- tracking(dtiobj, minfa = 0.2)

R> tracks <- reduceFibers(tracks, maxdist = 0.5)

R> tracks.smooth <- reduceFibers(tracking(dtiobj.smooth, minfa = 0.2),

+ maxdist = 0.5)

R> source(system.file("rcode/mousecallbacks.r", package = "dti"))

R> sx <- 400

R> sy <- 450

R> w1 <- show3d(dtiind, FOV = 1, windowRect = c(1, 1, sx, sy))

R> w2 <- show3d(dtiind.smooth, FOV = 1,

+ windowRect = c(sx + 11, 1, 2 * sx + 10, sy))

R> w3 <- show3d(tracks, FOV = 1,

+ windowRect = c(2 * sx + 21, 1, 3 * sx + 20, sy))

R> w4 <- show3d(tracks.smooth, FOV = 1,

+ windowRect = c(3 * sx + 31, 1, 4 * sx + 30, sy))
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Figure 5: Example 4.1 (artificial data). 3D visualization of main tensor orientations without
and with use of structural adaptive smoothing and corresponding fiber tracking results (from
left to right). Results are shown for voxel with estimated FA > 0.3 and fiber tracks starting
from such voxel. Color codes estimated directions as for FA maps.

R> mouseTrackball(dev = c(w1, w2, w3, w4))

R> mouseZoom(2, dev = c(w1, w2, w3, w4))

R> mouseFOV(3, dev = c(w1, w2, w3, w4))

R> cat("w1 - Fiber orientations from tensor estimates\n

+ w2 - Fiber orientations from smoothed tensor estimates\n

+ w3 - Tracking results from tensor estimates\n

+ w4 - Tracking results from smoothed tensor estimates\n

+ - Color codes orientation: red - along x; green - along y; blue - along z")

R> rgl.set(w1)

R> rgl.snapshot("ex1tens.png")

R> rgl.set(w2)

R> rgl.snapshot("ex1smtens.png")

R> rgl.set(w3)

R> rgl.snapshot("ex1tracks.png")

R> rgl.set(w4)

R> rgl.snapshot("ex1smtracks.png")

Figure 5 provides a 3D visualization of tensor characteristics and fiber tracking results. Ori-
entations are color coded using Equation 3. Note the improvement of results due to adaptive
smoothing.

4.2. Example: The effect of regularization in Q-ball imaging

The next example illustrates the effect of regularization in ODF reconstruction with spherical
harmonics using the experimental data set 1. The data are modeled using a tensor mixture
model of maximum order 4 and the ODF-estimate (5, 6) applying the regularization proposed
in Aganj et al. (2010) when estimating the coefficients in (5). The regularization parameter
is chosen as λreg = {2.5 · 10−3, 1 · 10−2, 4 · 10−2}, respectively.

R> gradients <- read.table("b-directions.txt")

R> dwiobj <- readDWIdata(gradients, "data1", "NIFTI")
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R> dwiobj <- sdpar(dwiobj, 500, interactive = FALSE)

R> mtensobj <- dwiMixtensor(dwiobj, maxcomp = 4, pen = 1)

R> dwiqball8.25m3 <- dwiQball(dwiobj, order = 8, lambda = 2.5e-3)

R> dwiqball8.1m2 <- dwiQball(dwiobj, order = 8, lambda = 1e-2)

R> dwiqball8.4m2 <- dwiQball(dwiobj, order = 8, lambda = 4e-2)

Coordinates of two voxel with structure have been determined interactively using

R> coord <- plot(mtensobj, slice = 3, what = "eorder", view = "axial",

+ identify = TRUE)

Get coordinates of two interesting voxel; here: c(23, 23, 3) (inside a large region of esti-
mated order 2 voxel) and c(10, 16, 3) (an estimated order 3 voxel). These voxels have been
used in the two rows of Figure 6.

R> source(system.file("rcode/mousecallbacks.r", package = "dti"))

R> sx <- 400

R> sy <- 400

R> w1 <- show3d(mtensobj[23, 23, 3], windowRect = c(1, 1, sx, sy))

R> w2 <- show3d(dwiqball8.25m3[23, 23, 3],

+ windowRect = c(sx + 11, 1, 2 * sx + 10, sy))

R> w3 <- show3d(dwiqball8.1m2[23, 23, 3],

+ windowRect = c(2 * sx + 21, 1, 3 * sx + 20, sy))

R> w4 <- show3d(dwiqball8.4m2[23,23,3],

+ windowRect = c(3 * sx + 31, 1, 4 * sx + 30, sy))

R> mouseTrackball(dev = c(w1, w2, w3, w4))

R> mouseZoom(2,dev = c(w1, w2, w3, w4))

R> mouseFOV(3,dev = c(w1, w2, w3, w4))

R> rgl.set(w1)

R> rgl.snapshot("ex2mix2.png")

R> rgl.set(w2)

R> rgl.snapshot("ex2qball2a.png")

R> rgl.set(w3)

R> rgl.snapshot("ex2qball2b.png")

R> rgl.set(w4)

R> rgl.snapshot("ex2qball2c.png")

R> w5 <- show3d(mtensobj[10, 16, 3],

+ windowRect = c(1, sy + 11, sx, 2 * sy + 10))

R> w6 <- show3d(dwiqball8.25m3[10, 16, 3],

+ windowRect = c(sx + 11, sy + 11, 2 * sx + 10, 2 * sy + 10))

R> w7 <- show3d(dwiqball8.1m2[10, 16, 3],

+ windowRect = c(2 * sx + 21, sy + 11, 3 * sx + 20, 2 * sy + 10))

R> w8 <- show3d(dwiqball8.4m2[10, 16, 3],

+ windowRect = c(3 * sx + 31, sy + 11, 4 * sx + 30, 2 * sy + 10))

R> mouseTrackball(dev = c(w5, w6, w7, w8))

R> mouseZoom(2, dev = c(w5, w6, w7, w8))

R> mouseFOV(3, dev = c(w5, w6, w7, w8))

R> rgl.set(w5)
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Figure 6: ODF estimated using tensor mixture models (left) and using ODF reconstruction
with spherical harmonics of order 8 and regularization parameter λreg = 2.5 ·10−3, 1 ·10−2, 4 ·
10−2 (from left to right) for two interactively selected voxel. Values of the estimated ODF are
color coded. In contrast to color coded FA maps red and blue represent large and small values
of the estimated ODF, respectively. Yellow and green correspond to intermediate values.

R> rgl.snapshot("ex2mix3.png")

R> rgl.set(w6)

R> rgl.snapshot("ex2qball3a.png")

R> rgl.set(w7)

R> rgl.snapshot("ex2qball3b.png")

R> rgl.set(w8)

R> rgl.snapshot("ex2qball3c.png")

Figure 6 illustrates results using a tensor mixture model and ODF reconstruction with spher-
ical harmonics of order 8. Stronger regularization, for larger values of λreg, reduces the
variability of the estimated ODF, at the cost of a possible bias.

ODF reconstruction using spherical harmonics is, as a solution of a linear problem, an appeal-
ing method. This comes at the cost of a biased estimate due a violation of its mono-exponential
decay assumption. Adequate modeling may be achieved using multi-shell acquisition schemes
that lead to a multi-exponential decay assumption (Descoteaux et al. 2010; Aganj et al. 2010).
The method requires one to choose appropriate parameters l and λreg.

4.3. Example: Tensor mixture models

Here, we illustrate capabilities of the tensor mixture model in comparison to the single tensor
model. We first analyze the experimental data set 2 with both models.

R> gradients <- read.table("b-directions.txt")
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R> dwiobj <- readDWIdata(gradients, "data2", "NIFTI")

R> dwiobj <- sdpar(dwiobj, 500, interactive = FALSE)

R> tensobj <- dtiTensor(dwiobj)

R> summary(tensobj)

R> indobj <- dtiIndices(tensobj)

R> summary(indobj)

R> mtobj1 <- dwiMixtensor(dwiobj, maxcomp = 1)

R> mtobj2 <- dwiMixtensor(dwiobj, maxcomp = 2)

R> mtobj2imp <- dwiMtImprove(mtobj2, dwiobj, maxcomp = 2)

R> mtobj2comb <- dwiMtCombine(mtobj2imp, mtobj1)

R> mtobj3 <- dwiMixtensor(dwiobj, maxcomp = 3)

R> mtobj3imp <- dwiMtImprove(mtobj3,dwiobj, maxcomp = 3)

R> mtobj3comb <- dwiMtCombine(mtobj3imp, mtobj2comb)

R> mtobj4 <- dwiMixtensor(dwiobj, maxcomp = 4)

R> mtobj4imp <- dwiMtImprove(mtobj4,dwiobj, maxcomp = 4)

R> mtobj4comb <- dwiMtCombine(mtobj4imp, mtobj3comb)

R> summary(mtobj4comb)

Parameter estimation in the tensor mixture model 8 requires one to solve a non-convex opti-
mization problem. In such problems results depend on the appropriate choice of initial values
for the parameters. The method dwiMtImprove allows for possible improvements using re-
sults from neighboring voxel for improved initial estimates. The method dwiMtCombine is
used for a voxel-wise comparison of results from two dwiMixtensor-objects selecting the best
reconstruction with respect to the specified model selection criterion (default: "BIC"). In
the example these methods are effectively used to select, in each voxel, a best estimate using
different initial parameters.

The method extract is now used to access components from the objects containing the tensor
and tensor mixture estimates.

R> tensorfa <- extract(indobj, what = "fa")$fa

R> mtobjind <- extract(mtobj4comb,

+ what = c("fa", "order", "eorder", "ev", "mix"))

R> signif(quantile(tensorfa), 3)

0% 25% 50% 75% 100%

0.0123 0.1120 0.3360 0.5120 0.8030

R> signif(quantile(mtobjind$fa), 3)

0% 25% 50% 75% 100%

0.00997 0.10400 0.50900 0.78500 0.95700

R> table(mtobjind$order)

1 2 3

457 448 85
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Figure 7: Visualization of results for the experimental data set 2, axial slice 2: FA (tensor
model)(range (0, 1)), FA (tensor mixture model)(range (0, 1)), estimated number of mix-
ture components (range (0, 3)), effective order (range (0, 2.8)) and maximal eigenvalue (range
(0, 2.27)) for mixture model with maximum model order 4 (from left to right). FA values
correspond to image intensity in both FA plots.

R> signif(quantile(mtobjind$eorder), 3)

0% 25% 50% 75% 100%

1.00 1.00 1.57 1.87 2.91

The functions plot, show.image and write.image use capabilities of package adimpro (Polzehl
and Tabelow 2007). Figure 7 is created by

R> tensorfa[tensorfa < 0.3] <- 0

R> img0 <- make.image(65535 * tensorfa[, , 2])

R> img1 <- plot(mtobj4comb, slice = 2, what = "fa", view = "axial")

R> img2 <- plot(mtobj4comb, slice = 2, what = "order", view = "axial")

R> img3 <- plot(mtobj4comb, slice = 2, what = "eorder", view = "axial")

R> img4 <- plot(mtobj4comb, slice = 2, what = "ev", view = "axial")

R> X11(width = 12, height = 6)

R> par(mfrow = c(1, 5), mar = c(1, 1, 3, 0.2), mgp = c(2, 1, 0))

R> show.image(img0, main = "Tensor FA")

R> show.image(img1, main = "Mixture FA")

R> show.image(img2, main = "Mixture order")

R> show.image(img3, main = "Effective order")

R> show.image(img4, main = "Maximum Eigenvalue")

R> write.image(img0, file = "ex3tensfa.png")

R> write.image(img1, file = "ex3mixfa.png")

R> write.image(img2, file = "ex3mixord.png")



Journal of Statistical Software 19

Figure 8: 3D visualization of results for the experimental data set 2: Voxel with estimated
effective order larger than 1.8 and fiber tracks starting within these voxels. Figure 3 (right)
illustrates the location of this region within the brain.

R> write.image(img3, file = "ex3mixeo.png")

R> write.image(img4, file = "ex3mixev.png")

provides characteristics of results obtained in the analysis. The left image shows the FA
for the second axial slice obtained using the tensor model. The other four images provide
FA, estimated number of mixture components, effective order and maximal eigenvalues (from
left to right) for the same slice obtained employing a tensor mixture model with specified
maximal number of compartments of 4 (see Tabelow et al. 2011b, for definitions and details).
We observe an increase of FA in comparison with the tensor model, especially in regions
adjacent to tissue borders. Note the spatial homogeneity observed in all characteristics for
the tensor mixture model.

R> w1 <- show3d(mtobj4comb, maxangle = 45, fibers = TRUE, mineo = 1.8,

+ maxobjects = 990, FOV = 1, windowRect = c(1, 1, 1400, 720), lwd = 3)

R> rgl.snapshot("eo1.8regionmix5.png")

Figure 8 illustrated some capabilities in 3D visualization. The image shows estimated ODF’s
for all voxel with effective order larger or equal than 1.8 together with fiber tracks starting
from these voxel. The data are rotated to show the five slices as individual layers. Color
codes values for the estimated ODF and direction for fiber tracks.

4.4. Example: Fiber tracking

The object tracks3.100 provided in file tracks3_100.rsc has been obtained analyzing high
resolution DWI data recorded by H.-U. Voss at Weill Medical College, Cornell University NY.
140 gradient directions were used and images of 256× 256× 66 voxel with spatial resolution
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of approximately 0.9 mm×0.9 mm×1.8 mm where recorded. Fiber tracking is performed by
the method tracking. The R code

R> load("tracks3_100.rsc")

R> summary(tracks3.100)

provides a complete history of the object tracks3.100 including the applied functions and
methods for the tracking and the basic characteristics of the object:

Object of class dwiFiber

Generated by calls :

[[1]]

readDWIdata(gradient, "s0004", "DICOM", 66, level = 0.75)

...

[[8]]

selectFibers(nymix3tracksred, minlength = 100)

Source-Filename : s0004

Dimension : 186x243x66

Number of Gradients : 150

Voxel extensions : 0.8984x0.8984x1.8

Minimum FA : 0.266

Maximum angle : 45

Number of fibers : 8278

Quantiles of fiber lengths:

0% 25% 50% 75% 100%

100 111 126 149 311

Total number of line segments : 1104254

Figure 9 is generated by

R> w1 <- show3d(tracks3.100, windowRect = c(1, 1, 900, 800), bg = "white")

R> w2 <- show3d(tracks3.100, windowRect = c(901, 1, 1900, 800), bg = "white")

R> rgl.set(w1)

R> rgl.snapshot("tracks100a.png")

R> rgl.set(w2)

R> rgl.snapshot("tracks100b.png")

and provides an illustration of the main long fiber tracks revealed by the analysis. Images
have been rotated into the correct position before rgl.snapshot was used. Annotations
where then made using GIMP (The GIMP Team 2011).

5. Conclusions

With the package dti we provide a toolbox for the analysis of diffusion weighted MR data
within the R language and environment for statistical computing (R Development Core Team
2011). The package includes functions for reading image data in DICOM and NIfTI format.
The data can be analyzed using diffusion tensor models, tensor mixture models and ODF
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Figure 9: Visualization of fiber tracks with minimal length 100. Left image: view from pos-
terior, right: sagittal view. Color codes the local direction of the fiber tracks using the same
scheme as for the FA maps. We label some main tracks: corpus callosum (CC), cingulum
(CG), superior fronto-occipital fasciculus (SFO), superior longitudinal fasciculus (SLF), supe-
rior thalamic radiation (STR), corticopontine tract (CPT), corticospinal tract (CST), medial
cerebellar peduncle (MCP), medial lemniscus (ML), inferior longitudinal fasciculus (ILF).
The upper slices of the brain were not scanned in favor of spinal cord slices.

models using spherical harmonics expansions. Fiber tracking may be performed using a
deterministic streamline algorithm. The package has extensive 2D (based on the adimpro
package, Polzehl and Tabelow 2007) and 3D (based on the rgl package, Adler and Murdoch
2010) visualization capabilities that can be used to produce publication ready illustrations. A
special feature of the package are functions for model-based adaptive smoothing of DWI data.
Further improvements will include a model free adaptive smoothing method and an OpenMP
based parallel implementation. Alternatives for reading and writing image data are provided
by oro.dicom (Whitcher 2011), oro.nifti (Whitcher et al. 2010, 2011), tractor.base (Clayden
2010; Clayden et al. 2011) and Rniftilib (Granert 2010). Interface functions to use capabilities
of these packages are planned. We refer to Tabelow et al. (2011a) and the Medical Imaging
task view (Whitcher 2010) for a comprehensive overview of related activities in R.

This paper discusses modeling for diffusion weighted MR experiments, describes the package
structure and provides guidance for a typical analysis using several instructive examples.
We encourage the reader to use the example R scripts and data provided as an electronic
appendix to follow the analysis and to get an impression of the 3D visualization capabilities.
The R scripts may also serve as a template for analyzing your own data.

Appendices

The electronic appendix contains the data sets used in directories data1, data2, data3,
data4a and data4b as well as scripts containing the R code used to produce the figures ant
to perform the analysis in the examples.
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