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Abstract

The package fmri is provided for analysis of single run functional Magnetic Resonance Imaging
data. It implements structural adaptive smoothing methods with signal detection for adaptive noise
reduction which avoids blurring of edges of activation areas. fmri provides fmri analysis from time
series modeling to signal detection and publication-ready images.

1 Introduction

Neuroscience is a very active field that combines challenging scientific questions with interesting method-
ological developments and draws expertise from as different fields as biology, medicine, physics, math-
ematics, statistics, and computer science. In fact, the emergence of medical imaging techniques have
triggered a boost of developments for medical or scientific applications in particular for the examination
of the human brain. One of them is functional Magnetic Resonance Imaging (fMRI) which due to its non-
invasive character has become the most informative tool for in-vivo examination of human brain function
on small spatial scales. It is nowadays utilized both in research as well as in clinical applications such as
diagnosis and treatment of brain lesions.

As fMRI suffers from noise its reduction plays a very important role. Gaussian filtering is applied in
standard analysis mostly to increase the signal to noise ratio (SNR) and the sensitivity of statistical tests.
At the same time smoothing reduces the number of independent decisions, relaxes the severe multiple
test problem and leads to a situation where critical values for signal detection can be assigned using
Random Field Theory (RFT). The inherent blurring effect can be ignored as long as the precise shape
and extent of the activation area is not important. However, as experiments become more and more
sophisticated and explore e.g. columnar functional structures in the brain or functions near brain lesions,
adaptive noise reduction methods become essential. For a comprehensive introduction into statistical
issues in fMRI we refer to Lazar (2008).

In the R-package fmri (Tabelow and Polzehl, 2010b) two algorithms from a special class of structural
adaptive smoothing methods are implemented together with appropriate signal detection: (a) structural
adaptive smoothing with RFT for signal detection and (b) structural adaptive segmentation based on mul-
tiscale tests. The package fmri (version 1.0-0) has been first reported in Polzehl and Tabelow (2007).
Since then, the package has evolved significantly and now includes more features, more advanced
methodology, and a Graphical User Interface (GUI). Here, we will report on these updates which refer to
the package version 1.4-2. For an introduction into the R environment for statistical computing (R Devel-
opment Core Team, 2010) see e.g. Dalgaard (2008) or the material on http://www.r-project.
org/. For the use of R in medical imaging problems we refer the reader to the taskview Medical Image
Analysis on http://cran.r-project.org/.
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2 Analyzing fMRI experiments

The package fmri analyzes the fMRI time series using the general linear modeling approach, see
e.g. Friston et al. (2007). The focus of the package is on the use of structural adaptive smoothing methods
for statistical parametric maps (SPM). Structural adaptive smoothing in this context allows for increasing
the sensitivity of signal detection while limiting the loss in spatial resolution. For an alternative modeling of
fMRI data using Independent Component Analysis (ICA) we refer to the package AnalyzeFMRI (Marchini
and de Micheaux, 2010).

2.1 Data formats

fMRI experiments typically acquire time series of full three dimensional brain volumes when a specific
stimulus or task is presented or performed, respectively. The package fmri provides functionality to read
medical imaging data from several formats. It may occasionally be preferable to convert the data using
external tools, e.g. afni (Cox, 1996), MRIcro (Rorden and Brett, 2000), to name only two, or use more
specialized packages, e.g. oro.dicom (Whitcher, 2010) or oro.nifti (Whitcher et al., 2010) for data input.
Objects containing fMRI data in the format used within fmri can then be easily generated, see documen-
tation and the description below.

The quasi-standard format for data recorded by a MR scanner is DICOMr (Digital Imaging and Commu-
nications in Medicine; http://medical.nema.org)1. The package fmri provides a function for
reading DICOM files:

R> ds <- read.DICOM(<filename>)

where <filename> is the name of the file. A data description, without actually reading the data, can
be obtained by setting the logical argument includedata to FALSE. The value returned by the
function read.DICOM is a list ds containing the full header information as a list with the four-byte
sequences (group,element) of the DICOM format as elements, the data (if read), and specific header
information, e.g. voxel size, image dimension, which are of special interest.

Other formats are more common in the context of fMRI. The ANALYZE format developed at the Mayo
Clinic is comprised of two files, the “img” and “hdr” files, containing the image data and information about
the image acquisition, respectively. Using the fmri package the file <filename> is read by

R> ds <- read.ANALYZE(<filename>)

where <filename> contains the data as 4D volume. This can be achieved by using many third-party
tools including MRICro (Rorden and Brett, 2000). Data prepared for the analysis software SPM (Ash-
burner et al., 2008) generally comes as a series of 3D volume with filenames<prefix+3digits+postfix>.
It is therefore possible to read this series using

R> ds <- read.ANALYZE(prefix = "", numbered = TRUE,
+ postfix = "", picstart = 1,
+ numbpic = 1)

1DICOM is the registered trademark of the National Electrical Manufacturers Association for its standards publications relat-
ing to digital communications of medical information.
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where picstart is the first number in the digits series and numbpic is the number of volumes.

The ANALYZE format has been further adapted to the NIfTI format by the DFWG (Data Format Working
Group) with improvements in extending the header information and the possibility to merge both files into
one (.nii). Reading these files is performed by

R> ds <- read.NIFTI(<filename>).

Note, that currently (version 1.4-2) compressed NIfTI files cannot be handled by fmri. Last but not least

R> ds <- read.AFNI(<filename>)

reads file pairs (HEAD/BRIK) used by afni (Cox, 1996).

The input functions for ANALYZE, NIfTI, and AFNI files may possess additional arguments setmask
and level. These can be used to classify voxel within and outside the brain based on the mean voxel
intensity. If setmask is TRUE (default) a threshold is set as the level-quantile of the mean voxel
intensities. Voxel with mean intensity exceeding this threshold are considered to be within the brain.
Further computations are restricted to such voxel.

The list object ds exploits S3 classes and has class "fmridata". The data cube is stored within the
list element ttt as a raw vector generated by

writeBin(as.numeric(ttt), raw(), 4)

to reduce object size. The data can be extracted from object ds in form of a 4D numeric array by

R> ttt <- extract.data(ds).

The complete header information is contained in the element header. Other list elements contain
information of special interest (voxel size, data dimension, etc.), see the according help for a complete
list. If other packages like oro.nifti are used for reading the medical imaging data, an object ds as
described above can be easily created and further processed by fmri.

fMRI datasets can be very large. Desktop computer memory may thus be a limited resource. Therefore a
restriction of the analysis to a special region-of-interest (ROI) may be required and useful. fmri provides
the function

R> dsselected <- cutroi(ds, xind, yind, zind, tind)

to create an object containing only a subcube, defined by the indices xind, yind, zind and tind,
of the data.

The function summary provides basic information on objects, for example

R> ds <- read.NIFTI("Imagination.nii")
R> summary(ds)

generates a short characterization of the second dataset (see 4.3):

Data Dimension: 64 64 30 105
Data Range : 0 ... 2934
Voxel Size : 3.75 3.75 4
File(s) Imagination.nii
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2.2 Data preprocessing

Data from fMRI experiments usually needs to be prepared ahead of the analysis. For example head
motion during the time course of the experiment leads to mis-registration of voxel within the data cube
at different time points. For group analysis the individual brain has to be mapped (normalized) onto a
“standard brain” to identify corresponding brain sections.

There are currently (version 1.4-2) no tools for preprocessing steps like motion-correction, registration,
normalization within the package fmri, as there exist many tools to perform these steps fast and efficiently
in advance. FMRI analysis with package fmri is currently restricted to single subject analysis. Functions
to perform group comparisons are planned for future versions.

As all imaging modalities, fMRI suffers from noise of different origin, rendering subsequent signal detec-
tion difficult. In order to increase sensitivity smoothing of fMRI data is usually part of fMRI preprocessing.
It is very important to note, that within the package fmri smoothing should not be applied as preprocess-
ing step. Instead structural adaptive smoothing, which is the main feature of the package, is applied to
the statistical parametric map (SPM) derived from the linear model for the time series. If the user intends
to use the package fmri it is advisable not to smooth the data with third-party tools. Doing so would lead
to a loss of essential information and impose a spatial correlation structure, which reduces the effect of
the structural adaptive smoothing used in the package and described in this paper.

2.3 Linear modeling

The observation that voxel with increased neuronal activity are characterized by a higher oxygenation
level (Ogawa et al., 1990, 1992) is known as BOLD (Blood Oxygenation Level Dependent) effect. In fMRI
it can be used as a natural contrast and, together with fact that nuclear magnetic resonance is free of
high energy radiation, forms the basis of its non-invasive character.

The expected BOLD response corresponding to the stimulus or task of the fMRI experiment can be
modeled by a convolution of the task indicator function with the hemodynamic response function. This
function characterizes the time delay and different form of the response in blood oxygenation. Within
the package fmri we model the hemodynamic response function h(t) as the difference of two gamma
functions following the proposal in Glover (1999):

h(t) =

(
t

d1

)a1
exp

(
− t− d1

b1

)
− c

(
t

d2

)a2
exp

(
− t− d2

b2

)
with default parameters a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9, and di = aibi, i = 1, 2, c = 0.35 and
t the time in seconds. Given the stimulus s(t) as a task indicator function, the expected BOLD response
is calculated as convolution of s(t) and h(t):

x(t) =

∫ ∞
0

h(u)s(t− u)du.

The resulting function x(t) is evaluated at the T scan acquisition times. Such expected BOLD signals
can be created by the function

R> hrf <- fmri.stimulus(scans = 1,
+ onsets = c(1), durations = c(1),
+ rt = 3, times= NULL, mean = TRUE,
+ a1 = 6, a2 = 12, b1 = 0.9, b2 = 0.9,
+ cc = 0.35).
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hrf is a vector of length T . onsets are the scan numbers of the task or stimulus onsets, durations
is the vector of stimulus durations in number of scans. rt is the time between subsequent volumes. The
design can be given in seconds by providing the argument times, in this case durations should
also be given in seconds. Additionally one can change the parameters of h(t) to use a slightly different
form for the hemodynamic response function. The vector hrf containes the values of the expected
BOLD response at the T scan acquisition times. Note, that slice time correction and local modeling of
h(t are currently not available within fmri.

Figure 1 shows the vector hrf created by fmri.stimulus() using

R> hrf <- fmri.stimulus(105, c(16, 46, 76), 15, 2)

and used for the analysis of dataset II in Subsection 4.3.

Figure 1 – Expected BOLD response for the second dataset used in this paper

Alternatively, a vector of length T (or number of scans) describing an expected BOLD response may be
supplied and used if appropriate.

For fmri we adopt the common view (see e.g. Friston et al., 1995; Worsley et al., 2002) of a linear model
for the time series Yi = (Yit) in each voxel i after reconstruction of the raw data and motion correction.

Yi = Xβi + εi, Eεi = 0T Covεi = Σi (1)

where X denotes a design matrix, containing the expected bold responses hrf1, hrf2, . . . , hrfq
corresponding to q experimental stimuli as columns. Additional columns represent a mean effect and a
polynomial trend of specified order. Using X we may also model s ≥ 0 confounding effects ce like
respiration or heart beat. The columns of X model the trend are chosen to be orthogonal to stimuli
effects. The parameters βi,jj = 1, . . . , q describe the effect of stimuli j for voxel i. The additive errors
εi = (εi1, . . . εiT ) are assumed to have zero expectation and variance depending on the underlying
tissue in voxel i.

The design matrix X can be created using

R> x <- fmri.design(cbind(hrf1, ..., hrfq, ce1, ...), order = 2)

where order is the order of the polynomial trend. Similar to hrf, x is simply a p × T matrix (p =
q + s+ order) and could also be provided directly.

The linear model is evaluated for the fMRI data in ds by

R> spm <- fmri.lm(ds, x, contrast = c(1))

5



In order to access the variability of the estimates of βi correctly we have to model the correlation structure
in Σi. In the package fmri we assume an autoregressive model of order 1. The auto-correlation coef-
ficients ρi are estimated from the residual vector ri = (ri1, . . . , riT ) of the fitted model (1) assuming
independence, i.e. Σi = σ2i IT . We apply the bias correction given by Worsley et al. (2002). Temporal
correlation is usually assumed to vary smoothly in space. Therefore we, by default, smooth the map of
auto-correlation coefficients using a Gaussian filter in order to stabilize the estimates and to increase the
number of degrees of freedom (Worsley, 2005). Using the resulting estimate ρ̂i we define a transforma-
tion matrix Ai = R̂−1/2(ρ̂i), where R̂(ρ) denotes the correlation matrix under the assumption of an
AR(1) process with parameter ρ for voxel i.

The model (1) is then transformed into a linear model

Ỹit = X̃iβi + ε̃it (2)

using Ỹi = AiYi, X̃i = AiX , and ε̃i = Aiεi with Cov εi ≈ σ2i IT . Estimation of the parameters of
interest β̃i is now straightforward by

β̃i = (X̃T
i X̃i)

−1X̃T
i Ỹi.

The error variance σ2i is estimated from the residuals r̃i of the linear model (2) by σ̃2i =
∑T

1 r̃
2
it/(T−p)

leading to voxelwise estimated covariance matrices

Cov β̃i = σ̃2i (X̃
T
i X̃i)

−1.

Usually special interest is in one of the parameters βi or a contrast of parameters γi = c>βi represented
by a vector c. Hence the result of the parameter estimation in the linear model are two three dimensional
arrays Γ̃ and S̃ containing the estimated effects γ̃i = cT β̃i and their estimated standard deviations

s̃i =

√
cTVar β̃ic.

The function fmri.lm() generates a list object with class attribute "fmrispm" containing arrays Γ̃
and S̃2 as components beta and var, respectively, and optionally residual information in "raw"
format, similar to the imaging data. One can use the extract.data() function with argument
what="residuals" to extract the residuals from the object. Note, that changing the contrast of
interest c requires re-estimation of the linear model using a new value for the argument contrast of
fmri.lm().

The voxelwise quotient θ̃i = γ̃i/s̃i of both arrays forms a statistical parametric map (SPM) Θ̃ which is
approximately a random t-field (see Worsley, 1994). Note that the number of degrees of freedom within
the t-Field depends on the of temporal autocorrelation and the smoothing of the AR(1) coefficients, see
again (Worsley, 2005). All arrays carry a correlation structure induced by the spatial correlation in the
fMRI data.

Θ̃ can now be used for a voxelwise signal detection classifying a voxel i as activated if the corresponding
value in the θ̃i exceeds a critical value. In this case the expected BOLD signal (or contrast) is detected to
significantly deviate from zero. There are typically two intrinsic problems for the signal detection. The first
is related to the large number of multiple tests in the data cube leading to a large number of false positive
detections if the significance level is not adjusted for multiple testing. Possible solutions are Bonferroni
corrections, assuming independence, thresholds obtained from Random Field Theory (RFT, Adler, 2000;
Worsley, 1994), or the use of the concept of false discovery rate (FDR, Benjamini and Hochberg, 1995;
Benjamini and Heller, 2007). The second problem is related to small values in Θ̃ caused by large error
variance leading to low sensitivity of the tests. For both problems smoothing of Γ̃ provides a solution, as
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it reduces the number of independent tests and ideally reduces the variance of the estimated parameters
or contrast. In the next section we will review two structural adaptive smoothing methods which are the
core of the package fmri.

3 Structural adaptive data processing

3.1 Structural adaptive smoothing

The most common smoothing method for functional MRI data is the Gaussian filter: It can be easily ap-
plied using fast Fourier transform (FFT) and guarantees the assumption for RFT which require a certain
smoothness in the data. Unfortunately non-adaptive smoothing leads to significant blurring and thus to
less specificity in the detection of the spatial extent and form of the activation areas in fMRI. There are
several applications, where the blurring renders subsequent medical decisions or neuroscientific analysis
difficult if not impossible, e.g. pre-surgical planning for brain tumor resection or columnar functional struc-
tures to name only two. We therefore proposed structural adaptive smoothing methods (Tabelow et al.,
2006; Polzehl et al., 2010) that overcome these drawbacks and allow for increased sensitivity for signal
detection while not blurring the borders of the activation areas.

Smoothing is generally considered as a preprocessing step for the data like motion-correction etc. How-
ever, except for effects from prewhitening, the order in which non-adaptive spatial smoothing and eval-
uation of the linear model are performed is arbitrary. Moreover, if the temporal correlations are spatially
homogeneous the temporal modeling and spatial smoothing can be interchanged.

Structural adaptive smoothing uses local homogeneity tests for the adaptation (Polzehl and Spokoiny,
2006). These tests are inefficient in the four dimensional data space. Structural adaptive smoothing is
therefore based on the estimates for Γ̃ and S̃ obtained by the temporal modeling using fmri.lm().
The parameter estimation in the linear model serves as a variance and dimension reduction step prior to
spatial smoothing and therefore allows for a much better adaptation (Tabelow et al., 2006).

Structural adaptive smoothing requires an assumption on the local homogeneity structure of the true
parameter γi. We assume a local constant function for γi, as non-activated areas are characterized by a
parameter value zero. In areas which are activated during the scan the parameter values differ from zero
and are similar, provided that the BOLD %-changes are similar. Other models are possible, but require
more computational effort. H0 : βi = 0 serves as the null hypothesis for the statistical test of activation.

Based on this assumption and the arrays Γ̃ and S̃, we use an iterative smoothing algorithm for the
statistical parametric map (SPM) that is based on pairwise tests of homogeneity. We specify kernel
functionsKl(x) = (1−x2)+ andKs(x) = min(1, 2(1−x)+). ForKl this choice is motivated by the
kernels near efficiency in nonadaptive smoothing, and it’s compact support and simplicity which reduces
the computational effort. The second kernel should exhibit a plateu near zero, be compactly supported
and monoton non-increasing on the positive axis. Let H = {hk}k

∗
k=1, with h0 = 1, be a series of

bandwidths generated such that
∑

jKl

(
d(i,j)
hk

)
, with d(i, j) denoting a distance between voxel i and

j, forms a geometric sequence with factor ch = 1.25. At iteration step k we define for a each voxel i
and all voxel j within a distance d(i, j) < hk weights

w
(k)
ij = Kl

(
d(i, j)

hk

)
Ks

(
s
(k−1)
ij

)
,
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compute locally smoothed estimates

γ̃
(k)
i =

1

N
(k)
i

∑
j

w
(k)
ij γ̃j , N

(k)
i =

∑
j

w
(k)
ij .

s
(k−1)
ij =

N
(k−1)
i

λC(k, ρs)s̃2i

(
γ̃
(k−1)
j − γ̃(k−1)i

)2
is a statistical penalty evaluating the statistical difference between the estimated parameters in voxel i
and j. The parameter λ has been determined by simulation depending on the error model (but not the
actual data) using a propagation condition (Polzehl and Spokoiny, 2006). This condition states that an
expected loss for the adaptive estimates at each iteration should not exceed the corresponding loss of its
non-adaptive counterpart, i.e. the estimate with λ =∞, by more than a factor 1 +α. This automatically
controls the bias of the estimates by their standard deviation (Polzehl and Spokoiny, 2006). λ determines
the degree of adaptation for the procedure.

Structural adaptive smoothing provides an intrinsic stopping criterion, since the quality of estimates is
preserved at later steps of the algorithm. The term C(k, ρs) provides an adjustment for the effect of
spatial correlation in the original data, characterized by a vector of first order correlation coefficients in
coordinate directions ρs, at iteration k. Optionally, specifying adaptation = "fullaws" for the

function fmri.smooth(), in each iteration the term
C(k,ρs)s̃2i

N
(k−1)
i

is replaced by an estimated variance

σ̂
2;(k−1)
i obtained from the smoothed residuals r̃

(k−1)
it = 1

N
(k−1)
i

∑
j w

(k−1)
ij r̃jt. This leads to additional

computational cost but usually improves results. Finally the variances of the smoothed estimates (con-

trasts) are estimated from smoothed residuals using the weighting scheme w
(k∗)
ij from the final iteration

k∗.

The structural adaptive smoothing procedure leads to estimates Γ̃k
∗

and S̃2(k∗) and a smoothed SPM
Θ̃k∗ . In these statistics shape and borders of the activation structure are preserved. As a consequence,
in contrast to non-adaptive smoothing methods, the procedure does reduce noise while preserving the
resolution of the scan as required by many modern applications (see Tabelow et al., 2009).

The number of iteration steps k∗ determaines a maximum achievable variance reduction or equivalently
a maximal achievable smoothness. It can be specified by selecting the maximum bandwidth hmax in
the series hk as the expected diameter of the largest area of activation. Oversmoothing structural bor-
ders is avoided in the algorithm by construction as long as differences between the parameter values
of two homogeneity regions are statistically significant at any scale, i.e. for any bandwidth hk, visited
within the iterations. The largest homogeneous region is expected to be the non-activation area, where
parameter values do not significantly differ from zero. Within this area, i.e. under the hypothesis of no
activation, structural adaptive smoothing, due to the propagation condition, behaves like its non-adaptive
counterpart with λ =∞.

Structural adaptive smoothing within the package fmri is performed by

> spm.smooth <- fmri.smooth(spm, hmax = 4, adaptation = "aws")

Note, that usually only the hmax argument and the choice of the adaptation method ("none" for non-
adaptive smoothing, "aws", "fullaws" for using improved variance estimates, and "segment"
for the structural adaptive segmentation described below) should be specified. Additional parameters of
the function have only minor influence on the results and should be considered for experts usage only.
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From the final estimates for k = k? the random t-field Θ̃(k?) = Γ̃(k?)/(V̂arΓ̃(k?))1/2 can be con-
structed. Under the null hypotheses of no activation the propagation condition ensures a smoothness cor-
responding to the application of a non-adaptive filter with the bandwidth hmax = hk? . To define thresh-
olds for signal detection on such a smooth t-field Random Field Theory (Adler, 2000) is applied (Tabelow
et al., 2006) in the package fmri.

Signal detection is performed by function fmri.pvalue applied to an object of class "fmrispm".

> pvalue <- fmri.pvalue(spm.smooth)

creates a list object of class "fmripvalue" which contains the p-values at each voxel in the list
element pvalues.

The result can be plotted by

> plot(pvalue, anatomic = NULL, maxpvalue = 0.05)

with a possible anatomic MR image used as an underlay anatomic and choosing a significance level
maxpvalue for the multiple test corrected p-values. As only NIfTI (and DICOM) format (may) provide
comprehensive orientation information only for these formats a matching with T1 (T2) image is imple-
mented. If anatomic is simply an array of the same size as the functional data, it will be used as
underlay.

3.2 Structural adaptive segmentation

Structural adaptive smoothing and subsequent signal detection by Random Field Theory forms a sequen-
tial procedure that depends on the similar behaviour of the adaptive method and non-adaptive smoothing
under the null hypothesis of no activation. It is desirable to combine adaptive smoothing and signal de-
tection in a way that solves the multiple-comparison problem, and to directly tackle the noise and multiple
test problem of fMRI analysis at once. Such integration is possible since the information used to generate
weighting schemes in the structural adaptive procedure (Tabelow et al., 2006) can also be used for signal
detection.

The resulting method is called structural adaptive segmentation (Polzehl et al., 2010). This method leads
to similar signal detection results, but is conceptually more coherent and uses much less approximating
assumptions concerning the signal detection. It also provides a more computationally efficient algorithm.

Let V be a region-of-interest (ROI). We construct a test for the hypothesis

H : max
i∈V

γi ≤ δ (or max
i∈V
|γi| ≤ δ). (3)

δ corresponds to a suitable minimal signal size for γ. The probability to reject the hypothesis in any voxel
i ∈ V should be less or equal a prescribed significance level α.

Using results from extreme value theory (Resnick, 1987; Polzehl et al., 2010) and ideas from multiscale
testing (Dümbgen and Spokoiny, 2001) a suitable test statistics for this hypotheses is

T (Γ̃H)=max
h∈H

max
i∈V

(
γ̃
(h)
i − δ

)
an(h)(ν)ŝ

(h)
i

−
bn(h)(ν)

an(h)(ν)
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where the number of degrees of freedom ν of the t-statistics θ̃i is, in the nonadaptive case, the shape
parameter of the limiting Fréchet distribution. The normalizing sequences an(h)(ν) and bn(h)(ν) are
selected to achieve, under the hypothesisH , δ = 0 and λ =∞, a good approximation of the distribution
of T (Γ̂H) by the Fréchet distribution Φν .

The adaptive segmentation algorithm employs in each iteration step a test statistic

T (Γ̂)(k)=max
i∈V

(
γ̂
(h)
i − δ

)
a
n
(k)
i (h)

(ν)ŝ
(h)
i

−
b
n
(k)
i (h)

(ν)

a
n
(k)
i

(h)(ν)
,

where ni(h) ≤ n(h) reflects the effect of adaptive weights, to decide whether to reject the null hypoth-
esis at iteration k. Adaptive smoothing is performed as long as the hypothesis is not rejected. Otherwise
non-adaptive smoothing is restricted to the set of detected deviances from the hypothesis in either pos-
itive or negative direction. Critical values are determined by simulation under the null hypothesis as
quantile of the distribution of

T̃ (Γ̂H) = max
k

T (Γ̂)(k)

for a wide range of n, ν and suitable values of λ. A minimum value of λ has again been selected to fulfill
a propagation condition under the null hypothesis. For details see Polzehl et al. (2010).

Structural adaptive segmentation combines the structural adaptive smoothing algorithm described in the
preceding section with a test using T (Γ̂)(k) at iteration k. The result are three segments, one, where
the hypotheses of no activation could not be rejected, and two segments for the two-sided alternatives.
Note, that no p-values are determined but the method directly uses a specified significance level α for
determining the critical values for the test.

In fmri structural adaptive segmentation can be performed on an object "fmrispm" from the linear
model fmri.lm() by choosing adaptation = "segment" in

> spm.segment <- fmri.smooth(spm, hmax = 4,
+ adaptation = "segment",
+ alpha = 0.05)

The (mutliple test corrected) significance level alpha may be chosen within the range 0.01 to 0.2. The
result of the structural adaptive segmentation is information on three segments that can be visualized
using:

> plot(spm.segment)

Within activated areas the size of the estimated signal is provided as additional color coded information.

4 Example

4.1 Methods

In our first example we use an auditory dataset recorded by Geraint Rees under the direction of Karl
Friston and the FIL methods group which is available from the SPM website (Ashburner et al., 2008). 96
acquisitions were made with scan to scan repeat time RT=7s, in blocks of 6, resulting in 16 blocks of 42s
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Figure 2 – Result of signal detection using structural adaptive segmentation and the dataset described above
(slices 33, 34, 36, and 37). The color scheme codes the size of the estimated signal in a voxel where a
activated segment has been detected by the algorithm. The underlay is the first volume of the time series.

duration. The condition for successive blocks alternated between rest and auditory stimulation, starting
with rest. Auditory stimulation was with bi-syllabic words presented binaurally at a rate of 60 per minute.
The functional data starts at acquisition 4, image fM00223_004. EPI images were acquired on a
modified 2T Siemens MAGNETOM Vision system. Each acquisition consisted of 64 contiguous slices
with matrix size 64× 64 and 3mm3 isotropic voxel.

For the second example a sports imagination task fMRI scan was performed by one healthy adult female
subject within a research protocol approved by the institutional review board of Weill Cornell Medical
College. For functional MRI, a GE-EPI sequence with TE/TR = 40/2000 ms was used and 30 axial slices
of 4 mm thickness were acquired on a 3T GE system. A field-of-view of 24 cm with a matrix size 64×64,
yielding voxel dimensions of 3.75 mm, respectively, was used. The excitation flip angle was 80 degrees.
Task and rest blocks had a duration of 30 s and were played out in the following order: rest, task, rest,
task, rest, task, rest, totalling 105 repetitions. Before the first block, 6 dummy scans where acquired to
allow for saturation equilibrium. The task consisted of imagination of playing tennis.

For the anatomy, a sagittal 3D MP-RAGE scan was acquired (matrix 256 x 160 x 110, resampled to 256
x 256 x 110, 24 cm FOV, 1.5 mm slice thickness, TR = 8.6 ms, TE = 1.772 ms, delay time = 725 ms, flip
angle = 7 degrees).

4.2 Dataset 1

The following script (spm.txt) can be used to process the first dataset. As an alternative the package
provides a graphical user interface (GUI), see Section 5, to guide the user through the analysis.

library(fmri)

ds <- read.ANALYZE("fM00223/fM00223_", TRUE, "", 4, 96)
anatomic <- extract.data(ds)[,,,1]

hrf <- fmri.stimulus(96, (0:7)*12+7, 6, 7)
x <- fmri.design(hrf)

spm <- fmri.lm(ds, x)

spm.seg <- fmri.smooth(spm, hmax = 4, adaptation="segment")
plot(spm.seg, anatomic)

11



Images can be directly exported from the GUI invoked by plot(). The results for some slices can be
seen in Figure 2.

4.3 Dataset 2

The following script (imagination.txt) can be used to process the second dataset:

library(fmri)
library(adimpro)

counter <- c(paste("0",1:9,sep=""),paste(10:99,sep=""))

ds <- read.NIFTI("Imagination.nii")

scans <- 105
onsets <- c(16, 46, 76)
duration <- 15
tr <- 2

hrf <- fmri.stimulus(scans, onsets, duration, tr)
x <- fmri.design(hrf)

spm <- fmri.lm(ds, x)

spm.segment <- fmri.smooth(spm, hmax = 4, adaptation = "segment")

ds.ana <- read.NIFTI("MPRAGEco.nii")
for (slice in 1:30) {

img <- plot(spm.segment, ds.ana, slice = slice)
write.image(make.image(img, gammatype="ITU"),

file=paste("result", counter[slice], ".png", sep=""))
}

The result ing images of this script are shown in Figure 3 As demonstrated in the script using the
plot() function and the package adimpro one can produce publication ready images in PNG, JPEG
and other formats using anatomical underlay. Note, that not all medical imaging formats support orienta-
tion of the datacube in scanner space so this feature is only implemented for anatomic underlay in NIfTI
format. However, many standard tools exist to provide the data in this format.

5 Organizing computational work flow (GUI)

In order to provide a user friendly environment we created a GUI (Graphical User Interface) which guides
the user through the work flow described above. The GUI does not provide the full functionality of the
package but gives quick results in standard analysis settings.

After invoking the package fmri the GUI can be started
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Figure 3 – Result of signal detection using structural adaptive segmentation and the second dataset de-
scribed above. The color scheme codes the size of the estimated signal in a voxel where an activated segment
has been detected by the algorithm. The underlay is a sagittal 3D MP-RAGE scan.
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> library(fmri)
> fmrigui()

and guides step by step through the analysis. At each step of the analysis help information is avail-
able. The following design information needs to be provided to perform the analyisis for the first dataset
described above.

interscan intervals: 7
scans per session: 96
Time unit (design) scans or seconds? scans
number of conditions: 1
condition name: Auditory
onset times: 7 19 31 43 55 67 79 91
duration: 6

The information can be saved in a file and re-used. Data can be accessed in form of AFNI, ANALYZE
and NIfTI files. In case of our example use the file select box to navigate to the directory containing the
ANALYZE files and select the first file within the directory, in our case file fM00223_004.hdr in folder
fM00223. The data are read and a basic consistency check with the experimental design is performed.

In the next step a threshold for mean image intensity is proposed. This threshold is used to define a mask
of voxel with mean intensity larger than the threshold. The mask should contain voxel within the brain so
that computations can be restricted to voxel within this mask. The button "View Mask" provides
images of the mask defined by the specified threshold together with density plots of image intensities for
centered data cubes of varying size. This information is provided to assist the selection of appropriate
thresholds.

Next a contrast is to be specified as a vector separated by commata or blanks. Trailing zeros may be
omitted. Given this information the statistical parametric map and the corresponding variance estimates
are computed following the steps described in section 2.3 using the function fmri.lm().

Finally a significance level (default: 0.05) needs to be specified. This is used within the adaptive segmen-
tation algorithm, see 3.2, or to specify the threshold for multiple test correction using RFT after structural
adaptive smoothing. Finally adaptive smoothing, see 3.1, or adaptive segmentation, see 3.2, using a
specified bandwidth may be performed.

Figure 4 provides a snapshot of the GUI. Note that, if needed the GUI can be closed with or without
saving the current results, i.e. copying its local environment. This enables to continue the analysis using
the full functionality of the package from console.

In a last step results can be visualized. The results view in 3D shows axial, saggital and coronal slices
with activations. The 2D view has more features, see Figure 5. Sliders can be used to go navigate the
slices, while the view can be changed from axial to coronal, or saggital. For convenience by default only 4
slices are shown. This can be changed using the number of slices and number of slices per page fields.
Use Change View/Slices to apply the changes.

The Extract images button enables to create images in JPEG or PNG format. Image processing
is done using the package adimpro (Tabelow and Polzehl, 2010a).
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Figure 4 – Snapshot of the fmri GUI after performing all steps.
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Figure 5 – Snapshot of the results window of the GUI. This is the same as invoked by the plot() function.
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