158 research outputs found

    Radiation exposure from diagnostic nuclear medicine examinations in golestan province

    Get PDF
    Introduction: The aim of present study was to estimate effective dose from most common procedures performed in nuclear medicine departments of Golestan province. Methods: Data of nuclear medicine procedures performed in 2 nuclear medicine departments in Golestan province were collected during 4 years. Effective dose, collective effective dose and effective dose per examination were calculated using standard dosimetry tables. Results: Based on the data of this study, results of 10437 nuclear medicine procedures performed during 4 years have lead to 3.97 mSv as average effective dose per examination and 10.37 human-Sv as mean collective effective dose. It was also revealed that Tc-99m was the main source of effective dose (98.3%), bone scan was the most common procedure (25.9%) and cardiac scan (MIBI-rest) has the highest collective effective dose (33.5%) during 4 years. Conclusion: Beside the cardiac scan which was the most common nuclear medicine procedure and the main contributor of effective dose in patients, due to geographical condition of the northeast of Iran, bone scan was the highest performed nuclear medicine examination in the Golestan province

    Zero tension Kardar-Parisi-Zhang equation in (d+1)- Dimensions

    Full text link
    The joint probability distribution function (PDF) of the height and its gradients is derived for a zero tension d+1d+1-dimensional Kardar-Parisi-Zhang (KPZ) equation. It is proved that the height`s PDF of zero tension KPZ equation shows lack of positivity after a finite time tct_{c}. The properties of zero tension KPZ equation and its differences with the case that it possess an infinitesimal surface tension is discussed. Also potential relation between the time scale tct_{c} and the singularity time scale tc,ν0t_{c, \nu \to 0} of the KPZ equation with an infinitesimal surface tension is investigated.Comment: 18 pages, 8 figure

    Exact Analysis of Level-Crossing Statistics for (d+1)-Dimensional Fluctuating Surfaces

    Full text link
    We carry out an exact analysis of the average frequency ναxi+\nu_{\alpha x_i}^+ in the direction xix_i of positive-slope crossing of a given level α\alpha such that, h(x,t)hˉ=αh({\bf x},t)-\bar{h}=\alpha, of growing surfaces in spatial dimension dd. Here, h(x,t)h({\bf x},t) is the surface height at time tt, and hˉ\bar{h} is its mean value. We analyze the problem when the surface growth dynamics is governed by the Kardar-Parisi-Zhang (KPZ) equation without surface tension, in the time regime prior to appearance of cusp singularities (sharp valleys), as well as in the random deposition (RD) model. The total number N+N^+ of such level-crossings with positive slope in all the directions is then shown to scale with time as td/2t^{d/2} for both the KPZ equation and the RD model.Comment: 22 pages, 3 figure

    Gauge Equivalence in Two--Dimensional Gravity

    Full text link
    Two-dimensional quantum gravity is identified as a second-class system which we convert into a first-class system via the Batalin-Fradkin (BF) procedure. Using the extended phase space method, we then formulate the theory in most general class of gauges. The conformal gauge action suggested by David, Distler and Kawai is derived from a first principle. We find a local, light-cone gauge action whose Becchi-Rouet-Stora-Tyutin invariance implies Polyakov's curvature equation R=3g++=0\partial_{-}R=\partial_{-}^{3}g_{++}=0, revealing the origin of the SL(2,R)SL(2,R) Kac-Moody symmetry. The BF degree of freedom turns out be dynamically active as the Liouville mode in the conformal gauge, while in the light-cone gauge the conformal degree of freedom plays that r{\^o}le. The inclusion of the cosmological constant term in both gauges and the harmonic gauge-fixing are also considered.Comment: 30 pages, KANAZAWA 93-

    Performance Evaluation of Pseudospectral Ultrasound Simulations on a Cluster of Xeon Phi Accelerators

    Get PDF
    The rapid development of novel procedures in medical ultrasonics, including treatment planning in therapeutic ultrasound and image reconstruction in photoacoustic tomography, leads to increasing demand for large-scale ultrasound simulations. However, routine execution of such simulations using traditional methods, e.g., finite difference time domain, is expensive and often considered intractable due to the computational and memory requirements. The k-space corrected pseudospectral time domain method used by the k-Wave toolbox allows for significant reductions in spatial and temporal grid resolution. These improvements are achieved at the cost of all-to-all communication, which are inherent to the multi-dimensional fast Fourier transforms. To improve data locality, reduce communication and allow efficient use of accelerators, we recently implemented a domain decomposition technique based on a local Fourier basis. In this paper, we investigate whether it is feasible to run the distributed k-Wave implementation on the Salomon cluster equipped with 864 Intel Xeon Phi (Knight’s Corner) accelerators. The results show the immaturity of the KNC platform with issues ranging from limited support of Infiniband and LustreFS in Intel MPI on this platform to poor performance of 3D FFTs achieved by Intel MKL on the KNC architecture. Yet, we show that it is possible to achieve strong and weak scaling comparable to CPU-only platforms albeit with the runtime 1.8× to 4.3× longer. However, the accounting policy for Salomon’s accelerators is far more favorable and thus their employment reduces the computational cost significantly

    Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer

    Get PDF
    This multicenter, randomized, open-label phase III trial (planned enrollment: 700 patients) was conducted to test the hypothesis that single-agent sunitinib improves progression-free survival (PFS) compared with capecitabine as treatment for advanced breast cancer (ABC). Patients with HER2-negative ABC that recurred after anthracycline and taxane therapy were randomized (1:1) to sunitinib 37.5 mg/day or capecitabine 1,250 mg/m2 (1,000 mg/m2 in patients >65 years) BID on days 1–14 q3w. The independent data-monitoring committee (DMC) determined during the first interim analysis (238 patients randomized to sunitinib, 244 to capecitabine) that the trial be terminated due to futility in reaching the primary endpoint. No statistical evidence supported the hypothesis that sunitinib improved PFS compared with capecitabine (one-sided P = 0.999). The data indicated that PFS was shorter with sunitinib than capecitabine (median 2.8 vs. 4.2 months, respectively; HR, 1.47; 95% CI, 1.16–1.87; two-sided P = 0.002). Median overall survival (15.3 vs. 24.6 months; HR, 1.17; two-sided P = 0.350) and objective response rates (11 vs. 16%; odds ratio, 0.65; P = 0.109) were numerically inferior with sunitinib versus capecitabine. While no new or unexpected safety findings were reported, sunitinib treatment was associated with higher frequencies and greater severities of many common adverse events (AEs) compared with capecitabine, resulting in more temporary discontinuations due to AEs with sunitinib (66 vs. 51%). The relative dose intensity was lower with sunitinib than capecitabine (73 vs. 95%). Based on these efficacy and safety results, sunitinib should not be used as monotherapy for patients with ABC

    Accurate and efficient reconstruction of deep phylogenies from structured RNAs

    Get PDF
    Ribosomal RNA (rRNA) genes are probably the most frequently used data source in phylogenetic reconstruction. Individual columns of rRNA alignments are not independent as a consequence of their highly conserved secondary structures. Unless explicitly taken into account, these correlation can distort the phylogenetic signal and/or lead to gross overestimates of tree stability. Maximum likelihood and Bayesian approaches are of course amenable to using RNA-specific substitution models that treat conserved base pairs appropriately, but require accurate secondary structure models as input. So far, however, no accurate and easy-to-use tool has been available for computing structure-aware alignments and consensus structures that can deal with the large rRNAs. The RNAsalsa approach is designed to fill this gap. Capitalizing on the improved accuracy of pairwise consensus structures and informed by a priori knowledge of group-specific structural constraints, the tool provides both alignments and consensus structures that are of sufficient accuracy for routine phylogenetic analysis based on RNA-specific substitution models. The power of the approach is demonstrated using two rRNA data sets: a mitochondrial rRNA set of 26 Mammalia, and a collection of 28S nuclear rRNAs representative of the five major echinoderm groups
    corecore