24 research outputs found
A Contraction Theory Approach to Stochastic Incremental Stability
We investigate the incremental stability properties of It\^o stochastic
dynamical systems. Specifically, we derive a stochastic version of nonlinear
contraction theory that provides a bound on the mean square distance between
any two trajectories of a stochastically contracting system. This bound can be
expressed as a function of the noise intensity and the contraction rate of the
noise-free system. We illustrate these results in the contexts of stochastic
nonlinear observers design and stochastic synchronization.Comment: 23 pages, 2 figure
Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection
International audienceAction selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multidisciplinary approach at the convergence of neuro-science, dynamical systems theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neu-ral projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties , when compared with a simple if-then-else decision rule
Isomorphisms of types in the presence of higher-order references (extended version)
We investigate the problem of type isomorphisms in the presence of
higher-order references. We first introduce a finitary programming language
with sum types and higher-order references, for which we build a fully abstract
games model following the work of Abramsky, Honda and McCusker. Solving an open
problem by Laurent, we show that two finitely branching arenas are isomorphic
if and only if they are geometrically the same, up to renaming of moves
(Laurent's forest isomorphism). We deduce from this an equational theory
characterizing isomorphisms of types in our language. We show however that
Laurent's conjecture does not hold on infinitely branching arenas, yielding new
non-trivial type isomorphisms in a variant of our language with natural
numbers
Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics
Recently, we proposed an ensemble-coding scheme of the midbrain superior colliculus (SC) in which, during a saccade, each spike emitted by each recruited SC neuron contributes a fixed minivector to the gaze-control motor output. The size and direction of this ‘spike vector’ depend exclusively on a cell’s location within the SC motor map (Goossens and Van Opstal, in J Neurophysiol 95: 2326–2341, 2006). According to this simple scheme, the planned saccade trajectory results from instantaneous linear summation of all spike vectors across the motor map. In our simulations with this model, the brainstem saccade generator was simplified by a linear feedback system, rendering the total model (which has only three free parameters) essentially linear. Interestingly, when this scheme was applied to actually recorded spike trains from 139 saccade-related SC neurons, measured during thousands of eye movements to single visual targets, straight saccades resulted with the correct velocity profiles and nonlinear kinematic relations (‘main sequence properties– and ‘component stretching’) Hence, we concluded that the kinematic nonlinearity of saccades resides in the spatial-temporal distribution of SC activity, rather than in the brainstem burst generator. The latter is generally assumed in models of the saccadic system. Here we analyze how this behaviour might emerge from this simple scheme. In addition, we will show new experimental evidence in support of the proposed mechanism
Particle observers for contracting dynamical systems
International audienc
Description de l'influence de la composition ionique de la phase aqueuse et de l'etat des surfaces sur la geometrie de l'espace poral de materiaux argileux
SIGLECNRS RP 185 (1950) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc