128 research outputs found

    Histochemistry and Cell Biology: 61 years and not tired at all.

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Isaac Newton is credited with quipping, “If I have seen further it is by standing on the shoulders of Giants”. This remark, made more than 300 years ago is still relevant for today’s scientists. Certainly, in our field of Histochemistry and Cell Biology, many of the insights we enjoy and techniques we apply in our research are the result of contributions to the literature provided by our scientific forebearers. As Editors of Histochemistry and Cell Biology, we are entrusted with maintaining the high quality and continued success of the journal instituted by its founders M. Chèvremont, Liège; H.W. Deane, New York; P.B. Diezel, F. Duspiva and H. Reznik, Heidelberg; O. Eränkö, Helsinki; P. Gedigk and N. Schümmelfelder, Bonn; W. Gössner, Tübingen; W. Graumann, Göttingen; A. G. E. Pearse, London; W. Sandritter, Frankfurt/Main; T.H. Schiebler, Kiel; G. Siebert, Mainz; and M. Wolman, Tel-Hashomer. The list of the international editors represented a virtual list of “Who’s Who” in histochemistry at that time.Biotechnology & Biological Sciences Research Council (BBSRC

    Imaging aspects of cardiovascular disease at the cell and molecular level

    Get PDF
    Cell and molecular imaging has a long and distinguished history. Erythrocytes were visualized microscopically by van Leeuwenhoek in 1674, and microscope technology has evolved mightily since the first single-lens instruments, and now incorporates many types that do not use photons of light for image formation. The combination of these instruments with preparations stained with histochemical and immunohistochemical markers has revolutionized imaging by allowing the biochemical identification of components at subcellular resolution. The field of cardiovascular disease has benefited greatly from these advances for the characterization of disease etiologies. In this review, we will highlight and summarize the use of microscopy imaging systems, including light microscopy, electron microscopy, confocal scanning laser microscopy, laser scanning cytometry, laser microdissection, and atomic force microscopy in conjunction with a variety of histochemical techniques in studies aimed at understanding mechanisms underlying cardiovascular diseases at the cell and molecular level

    Mediator and cohesin connect gene expression and chromatin architecture

    Get PDF
    Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.National Institutes of Health (U.S.) (Fellowship)Canadian Institutes of Health Research (Research Fellowship)National Institutes of Health (U.S.) (Grant R01 HG002668

    Mediator Subunit 12 Is Required for Neutrophil Development in Zebrafish

    Get PDF
    Hematopoiesis requires the spatiotemporal organization of regulatory factors to successfully orchestrate diverse lineage specificity from stem and progenitor cells. Med12 is a regulatory component of the large Mediator complex that enables contact between the general RNA polymerase II transcriptional machinery and enhancer bound regulatory factors. We have identified a new zebrafish med12 allele, syr, with a single missense mutation causing a valine to aspartic acid change at position 1046. Syr shows defects in hematopoiesis, which predominantly affect the myeloid lineage. Syr has identified a hematopoietic cell-specific requirement for Med12, suggesting a new role for this transcriptional regulator

    Subcellular distribution of terminal α-D- and β-D-galactosyl residues in Ehrlich tumour cells studied by lectin-gold techniques

    Full text link
    We have studied by high resolution in situ light and electron microscopic lectin-gold techniques the subcellular distribution of α- d -Gal residues using the Griffonia simplicifolia I-B 4 isolectin and compared it with that of β- d -Gal residues as detected with the Datura stramonium lectin in Ehrlich tumour cells grown as ascites or monolayer. The microvillar but not the smooth plasma membrane regions were labelled with the Griffonia simplicifolia I-B 4 isolectin whereas both plasma membrane regions were equally well labelled with the Datura stramonium lectin. Elements of the endocytotic/lysosomal system such as coated membrane invaginations and vesicles, early and late endosomes and secondary lysosomes were positive for both α- d -Gal and β- d -Gal residues. A particular feature of Ehrlich tumour cells is an elaborate tubular membrane system located in the pericentriolar region which is labelled throughout by both lectins and represents part of the endosomal system. In the Golgi apparatus labelling with both lectins was observed to commence in trans cisternae which is indirect evidence for a joint distribution of the sequentially acting β1,4 and α1,3-galactosyl-transferases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45677/1/10719_2004_Article_BF00731358.pd

    The role of bioreductive activation of doxorubicin in cytotoxic activity against leukaemia HL60-sensitive cell line and its multidrug-resistant sublines

    Get PDF
    Clinical usefulness of doxorubicin (DOX) is limited by the occurrence of multidrug resistance (MDR) associated with the presence of membrane transporters (e.g. P-glycoprotein, MRP1) responsible for the active efflux of drugs out of resistant cells. Doxorubicin is a well-known bioreductive antitumour drug. Its ability to undergo a one-electron reduction by cellular oxidoreductases is related to the formation of an unstable semiquionone radical and followed by the production of reactive oxygen species. There is an increasing body of evidence that the activation of bioreductive drugs could result in the alkylation or crosslinking binding of DNA and lead to the significant increase in the cytotoxic activity against tumour cells. The aim of this study was to examine the role of reductive activation of DOX by the human liver NADPH cytochrome P450 reductase (CPR) in increasing its cytotoxic activity especially in regard to MDR tumour cells. It has been evidenced that, upon CPR catalysis, DOX underwent only the redox cycling (at low NADPH concentration) or a multistage chemical transformation (at high NADPH concentration). It was also found, using superoxide dismutase (SOD), that the first stage undergoing reductive activation according to the mechanism of the redox cycling had the key importance for the metabolic conversion of DOX. In the second part of this work, the ability of DOX to inhibit the growth of human promyelocytic-sensitive leukaemia HL60 cell line as well as its MDR sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX) was studied in the presence of exogenously added CPR. Our assays showed that the presence of CPR catalysing only the redox cycling of DOX had no effect in increasing its cytotoxicity against sensitive and MDR tumour cells. In contrast, an important increase in cytotoxic activity of DOX after its reductive conversion by CPR was observed against HL60 as well as HL60/VINC and HL60/DOX cells

    Biomarkers of apoptosis

    Get PDF
    Within the era of molecularly targeted anticancer agents, it has become increasingly important to provide proof of mechanism as early on as possible in the drug development cycle, especially in the clinic. Selective activation of apoptosis is often cited as one of the major goals of cancer chemotherapy. Thus, the present minireview focuses on a discussion of the pros and cons of a variety of methodological approaches to detect different components of the apoptotic cascade as potential biomarkers of programmed cell death. The bulk of the discussion centres on serological assays utilising the technique of ELISA, since here there is an obvious advantage of sampling multiple time points. Potential biomarkers of apoptosis including circulating tumour cells, cytokeratins and DNA nucleosomes are discussed at length. However, accepting that a single biomarker may not have the power to predict proof of concept and patient outcome, it is clear that in the future more emphasis will be placed on technologies that can analyse panels of biomarkers in small volumes of samples. To this end the increased throughput afforded by multiplex ELISA technologies is discussed

    Malleable Machines in Transcription Regulation: The Mediator Complex

    Get PDF
    The Mediator complex provides an interface between gene-specific regulatory proteins and the general transcription machinery including RNA polymerase II (RNAP II). The complex has a modular architecture (Head, Middle, and Tail) and cryoelectron microscopy analysis suggested that it undergoes dramatic conformational changes upon interactions with activators and RNAP II. These rearrangements have been proposed to play a role in the assembly of the preinitiation complex and also to contribute to the regulatory mechanism of Mediator. In analogy to many regulatory and transcriptional proteins, we reasoned that Mediator might also utilize intrinsically disordered regions (IDRs) to facilitate structural transitions and transmit transcriptional signals. Indeed, a high prevalence of IDRs was found in various subunits of Mediator from both Saccharomyces cerevisiae and Homo sapiens, especially in the Tail and the Middle modules. The level of disorder increases from yeast to man, although in both organisms it significantly exceeds that of multiprotein complexes of a similar size. IDRs can contribute to Mediator's function in three different ways: they can individually serve as target sites for multiple partners having distinctive structures; they can act as malleable linkers connecting globular domains that impart modular functionality on the complex; and they can also facilitate assembly and disassembly of complexes in response to regulatory signals. Short segments of IDRs, termed molecular recognition features (MoRFs) distinguished by a high protein–protein interaction propensity, were identified in 16 and 19 subunits of the yeast and human Mediator, respectively. In Saccharomyces cerevisiae, the functional roles of 11 MoRFs have been experimentally verified, and those in the Med8/Med18/Med20 and Med7/Med21 complexes were structurally confirmed. Although the Saccharomyces cerevisiae and Homo sapiens Mediator sequences are only weakly conserved, the arrangements of the disordered regions and their embedded interaction sites are quite similar in the two organisms. All of these data suggest an integral role for intrinsic disorder in Mediator's function

    Dual mechanism of daunorubicin-induced cell death in both sensitive and MDR-resistant HL-60 cells

    Get PDF
    Exposure of some acute myeloid leukaemia (AML) cells to daunorubicin leads to rapid cell death, whereas other AML cells show natural drug resistance. This has been attributed to expression of functional P-glycoprotein resulting in reduced drug accumulation. However, it has also been proposed that P-glycoprotein-expressing multidrug-resistant (MDR) cells are inherently defective for apoptosis. To distinguish between these different possibilities, we have compared the cell death process in a human AML cell line (HL-60) with a MDR subline (HL-60/Vinc) at doses that yield either similar intracellular daunorubicin concentrations or comparable cytotoxicity. Adjustment of the dose to obtain the same intracellular drug accumulation in the two cell lines did not result in equal cytotoxicity, suggesting the presence of additional resistance mechanisms in the P-glycoprotein-expressing HL-60/Vinc cells. However, at equitoxic doses, similar cell death pathways were observed. In HL-60 cells, daunorubicin induced rapid apoptosis at 0.5–1 μM and delayed mitotic cell death at 0.1 μM. These concentrations are within the clinical dose range. Similarly, HL-60/Vinc cells underwent apoptosis at 50–100 μM daunorubicin and mitotic cell death at 10 μM. These results show, for the first time, that anthracyclines can induce cell death by a dual mechanism in both sensitive and MDR cells. Our results also show that not only the cytotoxicity, but also the kinetics and mechanism of cell death, are dose dependent. Interestingly, regrowth was observed only in association with delayed cell death and the formation of enlarged, often polyploid, cells with micronucleation, suggesting that morphological criteria may be useful to evaluate treatment efficacy in patients with myeloid leukaemias. © 1999 Cancer Research Campaig

    MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors

    Get PDF
    The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/β-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and β-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors
    corecore