399 research outputs found

    The Effects of Alignment Quality, Distance Calculation Method, Sequence Filtering, and Region on the Analysis of 16S rRNA Gene-Based Studies

    Get PDF
    Pyrosequencing of PCR-amplified fragments that target variable regions within the 16S rRNA gene has quickly become a powerful method for analyzing the membership and structure of microbial communities. This approach has revealed and introduced questions that were not fully appreciated by those carrying out traditional Sanger sequencing-based methods. These include the effects of alignment quality, the best method of calculating pairwise genetic distances for 16S rRNA genes, whether it is appropriate to filter variable regions, and how the choice of variable region relates to the genetic diversity observed in full-length sequences. I used a diverse collection of 13,501 high-quality full-length sequences to assess each of these questions. First, alignment quality had a significant impact on distance values and downstream analyses. Specifically, the greengenes alignment, which does a poor job of aligning variable regions, predicted higher genetic diversity, richness, and phylogenetic diversity than the SILVA and RDP-based alignments. Second, the effect of different gap treatments in determining pairwise genetic distances was strongly affected by the variation in sequence length for a region; however, the effect of different calculation methods was subtle when determining the sample's richness or phylogenetic diversity for a region. Third, applying a sequence mask to remove variable positions had a profound impact on genetic distances by muting the observed richness and phylogenetic diversity. Finally, the genetic distances calculated for each of the variable regions did a poor job of correlating with the full-length gene. Thus, while it is tempting to apply traditional cutoff levels derived for full-length sequences to these shorter sequences, it is not advisable. Analysis of β-diversity metrics showed that each of these factors can have a significant impact on the comparison of community membership and structure. Taken together, these results urge caution in the design and interpretation of analyses using pyrosequencing data

    Application of Two-Part Statistics for Comparison of Sequence Variant Counts

    Get PDF
    Investigation of microbial communities, particularly human associated communities, is significantly enhanced by the vast amounts of sequence data produced by high throughput sequencing technologies. However, these data create high-dimensional complex data sets that consist of a large proportion of zeros, non-negative skewed counts, and frequently, limited number of samples. These features distinguish sequence data from other forms of high-dimensional data, and are not adequately addressed by statistical approaches in common use. Ultimately, medical studies may identify targeted interventions or treatments, but lack of analytic tools for feature selection and identification of taxa responsible for differences between groups, is hindering advancement. The objective of this paper is to examine the application of a two-part statistic to identify taxa that differ between two groups. The advantages of the two-part statistic over common statistical tests applied to sequence count datasets are discussed. Results from the t-test, the Wilcoxon test, and the two-part test are compared using sequence counts from microbial ecology studies in cystic fibrosis and from cenote samples. We show superior performance of the two-part statistic for analysis of sequence data. The improved performance in microbial ecology studies was independent of study type and sequence technology used

    Randomized clinical trial to evaluate the effect of fecal microbiota transplant for initial Clostridium difficile infection in intestinal microbiome

    Get PDF
    Objective The aim of this study was to evaluate the impact of fecal donor-unrelated donor mix (FMT-FURM) transplantation as first-line therapy for C. difficile infection (CDI) in intestinal microbiome. Methods We designed an open, two-arm pilot study with oral vancomycin (250mg every 6 h for 10–14 days) or FMT-FURM as treatments for the first CDI episode in hospitalized adult patients in Hospital Universitario “Dr. Jose Eleuterio Gonzalez”. Patients were randomized by a closed envelope method in a 1: 1 ratio to either oral vancomycin or FMT-FURM. CDI resolution was considered when there was a reduction on the Bristol scale of at least 2 points, a reduction of at least 50% in the number of bowel movements, absence of fever, and resolution of abdominal pain (at least two criteria). From each patient, a fecal sample was obtained at days 0, 3, and 7 after treatment. Specimens were cultured to isolate C. difficile, and isolates were characterized by PCR. Susceptibility testing of isolates was performed using the agar dilution method. Fecal samples and FMT-FURM were analyzed by 16S rRNA sequencing. Results We included 19 patients; 10 in the vancomycin arm and 9 in the FMT-FURM arm. However, one of the patients in the vancomycin arm and two patients in the FMT-FURM arm were eliminated. Symptoms resolved in 8/9 patients (88.9%) in the vancomycin group, while symptoms resolved in 4/7 patients (57.1%) after the first FMT-FURM dose (P = 0.26) and in 5/7 patients (71.4%) after the second dose (P = 0.55). During the study, no adverse effects attributable to FMT-FURM were observed in patients. Twelve isolates were recovered, most isolates carried tcdB, tcdA, cdtA, and cdtB, with an 18-bp deletion in tcdC. All isolates were resistant to ciprofloxacin and moxifloxacin but susceptible to metronidazole, linezolid, fidaxomicin, and tetracycline. In the FMT-FURM group, the bacterial composition was dominated by Firmicutes, Bacteroidetes, and Proteobacteria at all-time points and the microbiota were remarkably stable over time. The vancomycin group showed a very different pattern of the microbial composition when comparing to the FMT-FURM group over time. Conclusion The results of this preliminary study showed that FMT-FURM for initial CDI is associated with specific bacterial communities that do not resemble the donors’ sample.Peer reviewedFinal Published versio

    Culture-Independent Microbiological Analysis of Foley Urinary Catheter Biofilms

    Get PDF
    Background: Prevention of catheter-associated urinary tract infection (CAUTI), a leading cause of nosocomial disease, is complicated by the propensity of bacteria to form biofilms on indwelling medical devices [1,2,3,4,5]. Methodology/Principal Findings: To better understand the microbial diversity of these communities, we report the results of a culture-independent bacterial survey of Foley urinary catheters obtained from patients following total prostatectomy. Two patient subsets were analyzed, based on treatment or no treatment with systemic fluoroquinolone antibiotics during convalescence. Results indicate the presence of diverse polymicrobial assemblages that were most commonly observed in patients who did not receive systemic antibiotics. The communities typically contained both Gram-positive and Gramnegative microorganisms that included multiple potential pathogens. Conclusion/Significance: Prevention and treatment of CAUTI must take into consideration the possible polymicrobial nature of any particular infection

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    The Airborne Metagenome in an Indoor Urban Environment

    Get PDF
    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens

    Characterization of Bacteria in Biopsies of Colon and Stools by High Throughput Sequencing of the V2 Region of Bacterial 16S rRNA Gene in Human

    Get PDF
    BACKGROUND: The characterization of the human intestinal microflora and their interactions with the host have been identified as key components in the study of intestinal disorders such as inflammatory bowel diseases. High-throughput sequencing has enabled culture-independent studies to deeply analyze bacteria in the gut. It is possible with this technology to systematically analyze links between microbes and the genetic constitution of the host, such as DNA polymorphisms and methylation, and gene expression. METHODS AND FINDINGS: In this study the V2 region of the bacterial 16S ribosomal RNA (rRNA) gene using 454 pyrosequencing from seven anatomic regions of human colon and two types of stool specimens were analyzed. The study examined the number of reads needed to ascertain differences between samples, the effect of DNA extraction procedures and PCR reproducibility, and differences between biopsies and stools in order to design a large scale systematic analysis of gut microbes. It was shown (1) that sequence coverage lower than 1,000 reads influenced quantitative and qualitative differences between samples measured by UniFrac distances. Distances between samples became stable after 1,000 reads. (2) Difference of extracted bacteria was observed between the two DNA extraction methods. In particular, Firmicutes Bacilli were not extracted well by one method. (3) Quantitative and qualitative difference in bacteria from ileum to rectum colon were not observed, but there was a significant positive trend between distances within colon and quantitative differences. Between sample type, biopsies or stools, quantitative and qualitative differences were observed. CONCLUSIONS: Results of human colonic bacteria analyzed using high-throughput sequencing were highly dependent on the experimental design, especially the number of sequence reads, DNA extraction method, and sample type
    corecore