310 research outputs found

    Diabetes and other vascular risk factors in association with the risk of lower extremity amputation in chronic limb-threatening ischemia: a prospective cohort study

    Get PDF
    BACKGROUND: Patients with diabetes are at increased risk of developing chronic limb-threatening ischemia (CLTI) due to peripheral arterial disease, and this often results in lower extremity amputation (LEA). Little is known of the interaction between diabetes and other vascular risk factors in affecting the risk of CLTI. METHODS: We investigated the association of diabetes, and its interaction with hypertension, body mass index (BMI) and smoking, with the risk of LEA due to CLTI in the population-based Singapore Chinese Health Study. Participants were interviewed at recruitment (1993-1998) and 656 incident LEA cases were identified via linkage with nationwide hospital database through 2017. Multivariate-adjusted Cox proportional hazards models were used to compute hazard ratios (HRs) and 95% CIs for the associations. RESULTS: The HR (95% CI) for LEA risk was 13.41 (11.38-15.79) in participants with diabetes compared to their counterparts without diabetes, and the risk increased in a stepwise manner with duration of diabetes (P for trend < 0.0001). Hypertension and increased BMI independently increased LEA risk in those without diabetes but did not increase the risk in those with diabetes (P for interaction with diabetes ≤ 0.0006). Conversely, current smoking conferred a risk increment of about 40% regardless of diabetes status. CONCLUSIONS: Although diabetes conferred more than tenfold increase in risk of LEA, hypertension and increased BMI did not further increase LEA risk among those with diabetes, suggesting a common mechanistic pathway for these risk factors. In contrast, smoking may act via an alternative pathway and thus confer additional risk regardless of diabetes status

    Serum tartrate-resistant acid phosphatase 5b activity as a prognostic marker of survival in breast cancer with bone metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum tartrate-resistant acid phosphatase 5b (TRACP 5b) activity is a marker of osteoclast number and is elevated in breast cancer (BC) patients with extensive bone metastasis, which might in turn reflect the tumour burden. We tested the hypothesis that baseline serum TRACP 5b activity and its interval change are potential prognostic markers of survival in BC patients with bone metastasis.</p> <p>Methods</p> <p>We analyzed the data from previous prospective studies. A total of 100 patients with newly diagnosed bone metastasis were included. Cox proportional regression model was used to evaluate the correlation between the overall survival time (OS) and baseline serum TRACP 5b activity and its interval changes. The least significant change (LSC) of TRACP 5b was calculated from data obtained from 15 patients with early BC.</p> <p>Results</p> <p>Estrogen receptor status (Hazard Ratio (HR) = 0.397; <it>p </it>= 0.003) and visceral metastasis (HR = 0.492; <it>p </it>= 0.0045) were significantly correlated with OS. The OS was significantly shorter in those patients with higher baseline TRACP 5b activity based on a cut-off value to delineate the highest tertile (HR = 3.524; <it>p </it>< 0.0001). Further analysis demonstrated that among patients in the highest tertile, OS was significantly longer in those patients who had achieved a decrease of serum TRACP 5b activity greater than the LSC (38.59%) (<it>p </it>= 0.0015).</p> <p>Conclusions</p> <p>We found that TRACP 5b activity and its interval change after treatment bore a prognostic role in BC patients with bone metastasis and a high baseline serum TRACP 5b activity. Further prospective phase II study is necessary to confirm these results.</p

    The fate of steroid estrogens: Partitioning during wastewater treatment and onto river sediments

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Springer Science+Business Media B.V.The partitioning of steroid estrogens in wastewater treatment and receiving waters is likely to influence their discharge to, and persistence in, the environment. This study investigated the partitioning behaviour of steroid estrogens in both laboratory and field studies. Partitioning onto activated sludge from laboratory-scale Husmann units was rapid with equilibrium achieved after 1 h. Sorption isotherms and Kd values decreased in the order 17α-ethinyl estradiol > 17α-estradiol > estrone > estriol without a sorption limit being achieved (1/n >1). Samples from a wastewater treatment works indicated no accumulation of steroid estrogens in solids from primary or secondary biological treatment, however, a range of steroid estrogens were identified in sediment samples from the River Thames. This would indicate that partitioning in the environment may play a role in the long-term fate of estrogens, with an indication that they will be recalcitrant in anaerobic conditions.EPSR

    Extremal solutions for p-Laplacian fractional integro-differential equation with integral conditions on infinite intervals via iterative computation

    Get PDF
    We study the extremal solutions of a class of fractional integro-differential equation with integral conditions on infinite intervals involving the p-Laplacian operator. By means of the monotone iterative technique and combining with suitable conditions, the existence of the maximal and minimal solutions to the fractional differential equation is obtained. In addition, we establish iterative schemes for approximating the solutions, which start from the known simple linear functions. Finally, an example is given to confirm our main results

    Deleted in Liver Cancer 1 (DLC1) Utilizes a Novel Binding Site for Tensin2 PTB Domain Interaction and Is Required for Tumor-Suppressive Function

    Get PDF
    Background: Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms underlying the interaction between DLC1 and various tensins remain controversial. Methodology/Principal Findings: We used a co-immunoprecipitation assay to identify a previously undocumented binding site at 375-385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1ΔPTB). However, as demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive activity of DLC1 upon its removal from DLC1. Conclusions/Significance: This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1. © 2009 Chan et al.published_or_final_versio

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog
    corecore