11 research outputs found

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    INTRODUCTION Interferons (IFNs) are cytokines that are rapidly deployed in response to invading pathogens. By initiating a signaling cascade that stimulates the expression of hundreds of genes, IFNs create an antiviral state in host cells. Because IFNs heavily influence COVID-19 outcomes, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication can be inhibited by the antiviral state, it is important to understand how the individual antiviral effectors encoded by IFN-stimulated genes (ISGs) inhibit SARS-CoV-2. RATIONALE We hypothesized that IFN-stimulated antiviral effectors can inhibit SARS-CoV-2, and that variation at the loci encoding these defenses underlies why some people are more susceptible to severe COVID-19. RESULTS We used arrayed ISG expression screening to reveal that 2′-5′-oligoadenylate synthetase 1 (OAS1) consistently inhibited SARS-CoV-2 in different contexts. Using CRISPR-Cas9, we found that endogenous OAS1 makes a substantial contribution to the antiviral state by recognizing short stretches of double-stranded RNA (dsRNA) and activating RNase L. We globally mapped where OAS1 binds to SARS-CoV-2 viral RNAs and found that OAS1 binding is remarkably specific, with two conserved stem loops in the SARS-CoV-2 5′-untranslated region (UTR) constituting the principal viral target. OAS1 expression was readily detectable at the sites of infection in individuals who died of COVID-19, and specific OAS1 alleles are known to be associated with altered susceptibility to infection and severe disease. It had previously been reported that alleles containing a common splice-acceptor single nucleotide polymorphism in OAS1 (Rs10774671) were associated with less severe COVID-19. We determined that people with at least one allele with a G at this position could express a prenylated form of OAS1 (p46), whereas other individuals could not. Using a series of mutants, we found that C-terminal prenylation was necessary for OAS1 to initiate a block to SARS-CoV-2. Furthermore, confocal microscopy revealed that prenylation targeted OAS1 to perinuclear structures rich in viral dsRNA, whereas non-prenylated OAS1 was diffusely localized and unable to initiate a detectable block to SARS-CoV-2 replication. The realization that prenylation is essential for OAS1-mediated sensing of SARS-CoV-2 allowed us to examine the transcriptome of infected patients and investigate whether there was a link between the expression of prenylated OAS1 and SARS-CoV-2 disease progression. Analysis of the OAS1 transcripts from 499 hospitalized COVID-19 patients revealed that expressing prenylated OAS1 was associated with protection from severe COVID-19. Because prenylated OAS1 was so important in human cases, we wanted to determine whether horseshoe bats, the likely source of SARS-CoV-2, possessed the same defense. When we examined the genomic region where the prenylation signal should reside, retrotransposition of a long terminal repeat sequence had ablated this signal, preventing the expression of prenylated anti-CoV OAS1 in these bats. CONCLUSION C-terminal prenylation targets OAS1 to intracellular sites rich in viral dsRNA, which are likely the SARS-CoV-2 replicative organelles. Once in the right place, OAS1 binds to dsRNA structures in the SARS-CoV-2 5′-UTR and initiates a potent block to SARS-CoV-2 replication. Thus, the correct targeting of OAS1 and the subsequent inhibition of SARS-CoV-2 likely underpins the genetic association of alleles containing a G at Rs10774671 with reduced susceptibility to infection and severe disease in COVID-19. Moreover, the conspicuous absence of this antiviral defense in horseshoe bats potentially explains why SARS-CoV-2 is so sensitive to this defense in humans

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    Proteomic analysis of the cell cycle of procylic form Trypanosoma brucei

    No full text
    We describe a single-step centrifugal elutriation method to produce synchronous G1-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labelling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5,325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741

    FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2

    No full text
    Prevention of SARS-CoV-2 infection through the modulation of viral host receptors, such as ACE21, could represent a new chemoprophylactic approach for COVID-19 complementing vaccination2,3. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We demonstrate that UDCA-mediated ACE2 downregulation reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we illustrate that UDCA reduces ACE2 expression in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of liver transplant recipients. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the road for future clinical trials
    corecore