13 research outputs found

    Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations

    Get PDF
    Polarization and radiation reaction (RR) effects in the interaction of a superintense laser pulse (I > 10(23) Wcm(-2)) with a thin plasma foil are investigated with three dimensional particle-in-cell (PIC) simulations. For a linearly polarized laser pulse, strong anisotropies such as the formation of two high-energy clumps in the plane perpendicular to the propagation direction and significant radiation reactions effects are observed. On the contrary, neither anisotropies nor significant radiation reaction effects are observed using circularly polarized laser pulses, for which the maximum ion energy exceeds the value obtained in simulations of lower dimensionality. The dynamical bending of the initially flat plasma foil leads to the self-formation of a quasiparabolic shell that focuses the impinging laser pulse strongly increasing its energy and momentum densities

    Laser-triggered ion acceleration at moderate intensity and pulse duration

    No full text
    Two-dimensional particle-in-cell (PIC) simulations of laser-triggered ion acceleration in overdense plasma at moderate intensity (similar or equal to 1.4x10(18) W/cm(2)) and pulse duration (similar or equal to 0.5 ps) are presented. We focus on the comparison of the efficiency of ion acceleration for normal and oblique incidence of the laser light, for backward and forward directions of ion emission, and for large and small focal spots. We discuss the correlation between the properties of accelerated ions and hot electrons, and identify the tendency of the ion spectra in the forward direction to those typical for the isothermal and adiabatic regimes of plasma expansion

    Radiation pressure acceleration of ultrathin foils

    No full text
    The acceleration of sub-wavelength, solid-density plasma foils by the ultraintense radiation pressure of circularly polarized laser pulses is investigated analytically and with simulations. An improved 'Light Sail' or accelerating mirror model, accounting for nonlinear self-induced transparency effects, is used for estimating the optimal thickness for acceleration. The model predictions are in good agreement with one-dimensional simulations. These latter are analyzed in detail to unfold the dynamics and self-organization of electrons and ions during the acceleration. Two-dimensional simulations are also performed to address the effects of target bending and of laser intensity inhomogeneity

    Fluid and kinetic simulation of inertial confinement fusion plasmas RID B-1229-2009 RID B-1900-2009

    No full text
    The main features of codes for inertial confinement fusion studies are outlined, and a few recent simulation results are presented. The two-dimensional Lagrangian fluid code DUED is used to study target evolution, including beam-driven compression, hydrodynamic stability, hot spot formation, ignition and burn. An electro-magnetic particle-in-cell (PIC) code is applied to the study of ultraintense laser-plasma interaction and generation of fast electron jets. A relativistic 3D collisionless fluid model addresses relativistic electron beam propagation in a dense plasma. (c) 2005 Elsevier B.V. All rights reserved

    Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction

    Get PDF
    The dynamics of magnetic fields with amplitude of several tens of Megagauss, generated at both sides of a solid target irradiated with a high intensity (? 1019W/cm2) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.Comment: Accepted for publication in Physical Review Letter

    Observation of magnetized soliton remnants in the wake of intense laser pulse propagation through plasmas

    Get PDF
    Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (greater than or similar to 10(19) W cm(-2)) short (similar to 1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices
    corecore