30 research outputs found

    A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease

    Get PDF
    In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease

    Characterization and thermal performance evaluation of infrared reflective coatings compatible with historic buildings

    Get PDF
    Two infrared reflective coatings recently developed as part of the EFFESUS European research project are characterized and evaluated in this paper. Thermal performance, durability, compatibility with historic fabric, and reversibility are all analysed. The results of extensive research that include laboratory analysis of selected substrates, measurements on a large-scale traditional masonry mock-up, thermodynamic simulations, and finally application in to a real historic building in Istanbul, all support the potential of the new coatings to improve the thermal performance of historic buildings, in keeping with their visual integrity and cultural value. Besides their reflective properties, proven by the thermal stress reductions on the treated surfaces, the new coatings are characterized by low visual impact, easy application, material compatibility, and reversibility after application, as well as durability over time.The EFFESUS project has received funding from the European Union Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 314678. The authors are grateful to Arianna Vivarelli for her contribution to the activities of the project

    Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline

    Get PDF
    Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF

    Petechial rash associated with Parvovirus B19 in children: case report and literature review

    No full text
    Human Parvovirus B19 (B19V) infection usually causes erythema infectiosum (EI). In recent decades, several uncommon exanthems have been described in association with B19V. Recently, haemorrhagic manifestations such as purpuric-petechial rash have been reported. We describe an unusual paediatric case of B19V associated with generalized petechial eruption, and a review of the recent literature

    Biofilm Formation among Stenotrophomonas maltophilia Isolates Has Clinical Relevance: The ANSELM Prospective Multicenter Study

    No full text
    The ability to form biofilms is a recognized trait of Stenotrophomonas maltophilia, but the extent of its clinical relevance is still unclear. The present multicenter prospective study (ANSELM) aims at investigating the association between biofilm formation and clinical outcomes of S. maltophilia infections. One hundred and nine isolates were collected from various geographical origins and stratified according to their clinical relevance. Biofilm formation was evaluated by the microtiter plate assay and correlated with microbiological and clinical data from the associated strains. Antibiotic susceptibility of the planktonic cells was tested by the disk diffusion technique, while antibiotic activity against mature biofilms was spectrophotometrically assessed. Most strains (91.7%) were able to form biofilm, although bloodborne strains produced biofilm amounts significantly higher than strains causing hospital- rather than community-acquired infections, and those recognized as “definite” pathogens. Biofilm formation efficiency was positively correlated with mechanical ventilation (p = 0.032), whereas a negative relationship was found with antibiotic resistance (r2 = 0.107; p < 0.001), specifically in the case of the pathogenic strains. Mature S. maltophilia biofilms were markedly more resistant (up to 128 times) to cotrimoxazole and levofloxacin compared with their planktonic counterparts, especially in the case of bloodborne strains. Our findings indicate that biofilm formation by S. maltophilia is obviously a contributing factor in the pathogenesis of infections, especially in deep ones, thus warranting additional studies with larger cohort of patients and isolates
    corecore