33 research outputs found

    Some algorithms to solve a bi-objectives problem for team selection

    Get PDF
    In real life, many problems are instances of combinatorial optimization. Cross-functional team selection is one of the typical issues. The decision-maker has to select solutions among (kh) solutions in the decision space, where k is the number of all candidates, and h is the number of members in the selected team. This paper is our continuing work since 2018; here, we introduce the completed version of the Min Distance to the Boundary model (MDSB) that allows access to both the "deep" and "wide" aspects of the selected team. The compromise programming approach enables decision-makers to ignore the parameters in the decision-making process. Instead, they point to the one scenario they expect. The aim of model construction focuses on finding the solution that matched the most to the expectation. We develop two algorithms: one is the genetic algorithm and another based on the philosophy of DC programming (DC) and its algorithm (DCA) to find the optimal solution. We also compared the introduced algorithms with the MIQP-CPLEX search algorithm to show their effectiveness

    The Sudden Dominance of blaCTX–M Harbouring Plasmids in Shigella spp. Circulating in Southern Vietnam

    Get PDF
    Shigellosis is a disease caused by bacteria belonging to Shigella spp. and is a leading cause of bacterial gastrointestinal infections in infants in unindustrialized countries. The Shigellae are dynamic and capable of rapid change when placed under selective pressure in a human population. Extended spectrum beta lactamases (ESBLs) are enzymes capable of degrading cephalosporins (a group of antimicrobial agents) and the genes that encode them are common in pathogenic E. coli and other related organisms in industrialized countries. In southern Vietnam, we have isolated multiple cephalosporin-resistant Shigella that express ESBLs. Furthermore, over two years these strains have replaced strains isolated from patients with shigellosis that cannot express ESBLs. Our work describes the genes responsible for this characteristic and we investigate one of the elements carrying one of these genes. These finding have implications for treatment of shigellosis and support the growing necessity for vaccine development. Our findings also may be pertinent for other countries undergoing a similar economic transition to Vietnam's and the corresponding effect on bacterial populations

    A Multi-Center Randomized Trial to Assess the Efficacy of Gatifloxacin versus Ciprofloxacin for the Treatment of Shigellosis in Vietnamese Children

    Get PDF
    The bacterial genus Shigella is the most common cause of dysentery (diarrhea containing blood and/or mucus) and the disease is common in developing countries with limitations in sanitation. Children are most at risk of infection and frequently require hospitalization and antimicrobial therapy. The WHO currently recommends the fluoroquinolone, ciprofloxacin, for the treatment of childhood Shigella infections. In recent years there has been a sharp increase in the number of organisms that exhibit resistance to nalidixic acid (an antimicrobial related to ciprofloxacin), corresponding with reduced susceptibility to ciprofloxacin. We hypothesized that infections with Shigella strains that demonstrate resistance to nalidixic acid may prevent effective treatment with ciprofloxacin. We performed a randomized controlled trial to compare 3 day ciprofloxacin therapy with 3 days of gatifloxacin, a newer generation fluoroquinolone with greater activity than ciprofloxacin. We measured treatment failure and time to the cessation of individual disease symptoms in 249 children with dysentery treated with gatifloxacin and 245 treated with ciprofloxacin. We could identify no significant differences in treatment failure between the two groups or in time to the cessation of individual symptoms. We conclude that, in Vietnam, ciprofloxacin and gatifloxacin are similarly effective for the treatment of acute dysentery

    Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    Get PDF
    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species

    Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure.

    No full text
    Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI: http://dx.doi.org/10.7554/eLife.01229.001

    Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam.

    No full text
    BACKGROUND: typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005. PRINCIPAL FINDINGS: the population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the SĂŽng H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene. SIGNIFICANCE: the H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam

    Fitness benefits in fluoroquinolone-resistant Salmonella Typhi in the absence of antimicrobial pressure

    No full text
    Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced

    A universal genome sequencing method for rotavirus A from human fecal samples which identifies segment reassortment and multi-genotype mixed infection

    No full text
    Background Genomic characterization of rotavirus (RoV) has not been adopted at large-scale due to the complexity of obtaining sequences for all 11 segments, particularly when feces are used as starting material. To overcome these limitations, we developed a novel RoV capture and genome sequencing method combining commercial enzyme immunoassay plates and a set of routinely used reagents. Results Our approach had a 100% success rate, producing &gt;90% genome coverage for diverse RoV present in fecal samples (Ct&lt;30). Conclusions This method provides a novel, reproducible and comparatively simple approach for genomic RoV characterization and could be scaled-up for use in global RoV surveillance systems.</p

    Angiostrongylus cantonensis is an Important Cause of Eosinophilic Meningitis in southern Vietnam

    Get PDF
    We utilised PCR to demonstrate that Angiostrongylus cantonensis was responsible for 67.3% of 55 cases of eosinophilic meningitis from a cohort of 1690 adult patients with CNS infection at a tertiary hospital in southern Vietnam. Longer duration of illness, depressed consciousness and peripheral blood eosinophilia were associated with PCR positivity
    corecore