4,610 research outputs found

    Pole assignment with optimal performance

    Get PDF
    A unified gradient-based treatment for optimizing certain performance indices under the constraint of pole assignment is provided. By introducing a free optimization parameter and solving a Sylvester matrix equation, compact gradient formulas are derived for general purpose gradient descent numerical implementation. Special problems including robust stability pole assignment and H2 sensitivity reduction are employed to illustrate the technique.published_or_final_versio

    On parametric stability margin maximization using state feedback pole assignment

    Get PDF
    In this paper, the maximization of the parametric stability margin of state-space uncertain systems under the constraints of pole assignment is investigated. The class of systems considered is where the uncertainty may be modelled as the, possibly nonlinear, variation of a parameter appearing in the entries of the system and input matrices. The continuity and differentiability of the stability margin are discussed. A gradient-based procedure is formulated for the maximization of the stability margin with the corresponding gradient provided. Numerical examples are used to illustrate the technique.published_or_final_versio

    The Deep Poincare Map: A Novel Approach for Left Ventricle Segmentation

    Get PDF
    Precise segmentation of the left ventricle (LV) within cardiac MRI images is a prerequisite for the quantitative measurement of heart function. However, this task is challenging due to the limited availability of labeled data and motion artifacts from cardiac imaging. In this work, we present an iterative segmentation algorithm for LV delineation. By coupling deep learning with a novel dynamic-based labeling scheme, we present a new methodology where a policy model is learned to guide an agent to travel over the image, tracing out a boundary of the ROI – using the magnitude difference of the Poincaré map as a stopping criterion. Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge. Our method outperforms the previous research over many metrics. In order to demonstrate the transferability of our method we present encouraging results over the STACOM 2011 data, when using a model trained on the SCD dataset

    FasL expression on human nucleus pulposus cells contributes to the immune privilege of intervertebral disc by interacting with immunocytes

    Get PDF
    The mechanisms of immune privilege in human nucleus pulposus (NP) remain unclear. Accumulating evidence indicates that Fas ligand (FasL) might play an important role in the immune privilege of the disc. We aimed for addressing the role of FasL expression in human intervertebral disc degeneration (IDD) and immune privilege in terms of the interaction between NP cells and immunocytes via the FasL-Fas machinery. We collected NP specimens from 20 patients with IDD as degenerative group and 8 normal cadaveric donors as control. FasL expression was detected by qRT-PCR, western blotting and flow cytometry (FCM). We also collected macrophages and CD8(+) T cells from the peripheral blood of patients with IDD for co-cultures with NP cells. And macrophages and CD8(+) T cells were harvested for apoptosis analysis by FCM after 2 days of co-cultures. We found that FasL expression in mRNA, protein and cellular resolutions demonstrated a significant decrease in degenerative group compared with normal control (p<0.05). FCM analysis found that human NP cells with increased FasL expression resulted in significantly increased apoptosis ratio of macrophages and CD8(+) T cells. Our study demonstrated that FasL expression tends to decrease in degenerated discs and FasL plays an important role in human disc immune privilege, which might provide a novel target for the treatment strategies for IDD.published_or_final_versio

    Separation between coherent and turbulent fluctuations. What can we learn from the Empirical Mode Decomposition?

    Full text link
    The performances of a new data processing technique, namely the Empirical Mode Decomposition, are evaluated on a fully developed turbulent velocity signal perturbed by a numerical forcing which mimics a long-period flapping. First, we introduce a "resemblance" criterion to discriminate between the polluted and the unpolluted modes extracted from the perturbed velocity signal by means of the Empirical Mode Decomposition algorithm. A rejection procedure, playing, somehow, the role of a high-pass filter, is then designed in order to infer the original velocity signal from the perturbed one. The quality of this recovering procedure is extensively evaluated in the case of a "mono-component" perturbation (sine wave) by varying both the amplitude and the frequency of the perturbation. An excellent agreement between the recovered and the reference velocity signals is found, even though some discrepancies are observed when the perturbation frequency overlaps the frequency range corresponding to the energy-containing eddies as emphasized by both the energy spectrum and the structure functions. Finally, our recovering procedure is successfully performed on a time-dependent perturbation (linear chirp) covering a broad range of frequencies.Comment: 23 pages, 13 figures, submitted to Experiments in Fluid

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

    Full text link
    We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding the detailed description of spatial distribution for positive and negative charge across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities and dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.Comment: 10 pages, 10 figures; accepted for publication in Journal of Biological Physic
    corecore