13 research outputs found

    Privacy-Preserving Observation in Public Spaces

    Get PDF
    One method of privacy-preserving accounting or billing in cyber-physical systems, such as electronic toll collection or public transportation ticketing, is to have the user present an encrypted record of transactions and perform the accounting or billing computation securely on them. Honesty of the user is ensured by spot checking the record for some selected surveyed transactions. But how much privacy does that give the user, i.e. how many transactions need to be surveyed? It turns out that due to collusion in mass surveillance all transactions need to be observed, i.e. this method of spot checking provides no privacy at all. In this paper we present a cryptographic solution to the spot checking problem in cyber-physical systems. Users carry an authentication device that authenticates only based on fair random coins. The probability can be set high enough to allow for spot checking, but in all other cases privacy is perfectly preserved. We analyze our protocol for computational efficiency and show that it can be efficiently implemented even on plat- forms with limited computing resources, such as smart cards and smart phones

    Cryptographic encoding and decoding of secret data

    No full text

    Accountable privacy supporting services

    No full text

    Privacy for public transportation

    No full text
    Abstract. We propose an application of recent advances in e-cash, anonymous credentials, and proxy re-encryption to the problem of privacy in public transit systems with electronic ticketing. We discuss some of the interesting features of transit ticketing as a problem domain, and provide an architecture sufficient for the needs of a typical metropolitan transit system. Our system maintains the security required by the transit authority and the user while significantly increasing passenger privacy. Our hybrid approach to ticketing allows use of passive RFID transponders as well as higher powered computing devices such as smartphones or PDAs. We demonstrate security and privacy features offered by our hybrid system that are unavailable in a homogeneous passive transponder architecture, and which are advantageous for users of passive as well as active devices.
    corecore