19 research outputs found

    Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming?

    Get PDF
    Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels

    Cyclized NDGA modifies dynamic α-synuclein monomers preventing aggregation and toxicity.

    Get PDF
    Growing evidence implicates α-synuclein aggregation as a key driver of neurodegeneration in Parkinson's disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting α-synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric α-synuclein, preventing aggregation into amyloid-like fibrils. This conformational remodeling preserved the dynamic adoption of α-helical conformations, which are essential for physiological membrane interactions. Oxidation-dependent NDGA cyclization was required for the interaction with monomeric α-synuclein. NDGA analog-pretreated α-synuclein did not aggregate even without NDGA-analogs in the aggregation mixture. Strikingly, NDGA-pretreated α-synuclein suppressed aggregation of naïve untreated aggregation-competent monomeric α-synuclein. Further, cyclized NDGA reduced α-synuclein-driven neurodegeneration in Caenorhabditis elegans. The cyclized NDGA analogs may serve as a platform for the development of small molecules that stabilize aggregation-resistant α-synuclein monomers without interfering with functional conformations yielding potential therapies for PD and related disorders

    Structural disorder of monomeric α-synuclein persists in mammalian cells

    No full text
    Intracellular aggregation of the human amyloid protein α-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of α-synuclein in different mammalian cell types. We show that the disordered nature of monomeric α-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, α-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-β component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote α-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.Fil: Theillet, Francois Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Binolfi, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario; Argentina. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Bekei, Beata. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Martorana, Andrea. Weizmann Institute of Science. Department of Chemical Physics; IsraelFil: Rose, Honor May. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Stuiver, Marchel. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Verzini, Silvia. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Lorenz, Dorothea. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Van Rossum, Marleen. Forschungsinstitut für Molekulare Pharmakologie; AlemaniaFil: Goldfarb, Daniella. Weizmann Institute of Science. Department of Chemical Physics; IsraelFil: Selenko, Philipp. Forschungsinstitut für Molekulare Pharmakologie; Alemani
    corecore