1,490 research outputs found
Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus
Microplastics (1 μm–5 mm) are a ubiquitous marine contaminant of global concern, ingested by a wide range of marine taxa. Copepods are a key component of marine food webs, providing a source of food for higher trophic levels, and playing an important role in marine nutrient cycling. Microplastic ingestion has been documented in copepods, but knowledge gaps remain over how this affects feeding preference and faecal density. Here, we use exposure studies incorporating algal prey and microplastics of varying sizes and shapes at a concentration of 100 microplastics mL−1 to show: (1) prey selection by the copepod Calanus helgolandicus was affected by the size and shape of microplastics and algae they were exposed to; Exposure to nylon fibres resulted in a 6% decrease in ingestion of similar shaped chain-forming algae, whilst exposure to nylon fragments led to an 8% decrease in ingestion of a unicellular algae that were similar in shape and size. (2) Ingestion of microplastics with different densities altered the sinking rates of faecal pellets. Faeces containing low-density polyethylene sank significantly more slowly than controls, whilst sinking rates increased when faeces contained high-density polyethylene terephthalate. These results suggest that C. helgolandicus avoid ingesting algae that are similar in size and/or shape to the microplastic particles they are exposed to, potentially in a bid to avoid consuming the plastic
Microplastics, microfibres and nanoplastics cause variable sub-lethal responses in mussels (Mytilus spp.)
We compare the toxicity of microplastics, microfibres and nanoplastics on mussels. Mussels (Mytilus
spp.) were exposed to 500 ng mL-1 of 20 µm polystyrene microplastics, 10x30 µm polyamide
microfibres or 50 nm polystyrene nanoplastics for 24 h or 7 days. Biomarkers of immune response,
oxidative stress response, lysosomal destabilisation and genotoxic damage were measured in
haemolymph, digestive gland and gills. Microplastics and microfibres were observed in the digestive
glands, with significantly higher plastic concentrations after 7-days exposure (ANOVA, P<0.05).
Nanoplastics had a significant effect on hyalinocyte-granulocyte ratios (ANOVA, P<0.05), indicative of
a heightened immune response. SOD activity was significantly increased followed 24 h exposure to
plastics (two-way ANOVA, P<0.05), but returned to normal levels after 7-days exposure. No evidence
of lysosomal destabilisation or genotoxic damage was observed from any form of plastic. The study
highlights how particle size is a key factor in plastic particulate toxicity
Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size
Microplastic debris is ubiquitous and yet sampling, classifying and enumerating this prolific pollutant in marine waters has proven challenging. Typically, waterborne microplastic sampling is undertaken using nets with a 333 μm mesh, which cannot account for smaller debris. In this study, we provide an estimate of the extent to which microplastic concentrations are underestimated with traditional sampling. Our efforts focus on coastal waters, where microplastics are predicted to have the greatest influence on marine life, on both sides of the North Atlantic Ocean. Microplastic debris was collected via surface trawls using 100, 333 and 500 μm nets. Our findings show that sampling using nets with a 100 μm mesh resulted in the collection of 2.5-fold and 10-fold greater microplastic concentrations compared with using 333 and 500 μm meshes respectively (P < 0.01). Based on the relationship between microplastic concentrations identified and extrapolation of our data using a power law, we estimate that microplastic concentrations could exceed 3700 microplastics m−3 if a net with a 1 μm mesh size is used. We further identified that use of finer nets resulted in the collection of significantly thinner and shorter microplastic fibres (P < 0.05). These results elucidate that estimates of marine microplastic concentrations could currently be underestimated
Six-year changes in body mass index and cardiorespiratory fitness of English schoolchildren from an affluent area
We compared values of body mass index (BMI) and cardiorespiratory fitness (20 m shuttle-run test) of n=157 boys and n=150 girls aged 10-11 measured in 2014 with measures from 2008 and 1998. Boys' fitness was lower (d=0.68) in 2014 than 2008, despite a small (d=0.37) decline in BMI. Girl's BMI changed trivially (d=0.08) but cardiorespiratory fitness was lower (d=0.47) in 2014 than 2008. This study suggests fitness is declining at 0.95% per year, which exceeds the 0.8% rate of decline we reported between 1998 and 2008 and is double the global average of 0.43%. Declines in fitness were independent of changes in BMI suggesting continued reductions in English children's habitual physical activity levels
Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs
The reference annotations made for a genome sequence provide the framework
for all subsequent analyses of the genome. Correct annotation is particularly
important when interpreting the results of RNA-seq experiments where short
sequence reads are mapped against the genome and assigned to genes according to
the annotation. Inconsistencies in annotations between the reference and the
experimental system can lead to incorrect interpretation of the effect on RNA
expression of an experimental treatment or mutation in the system under study.
Until recently, the genome-wide annotation of 3-prime untranslated regions
received less attention than coding regions and the delineation of intron/exon
boundaries. In this paper, data produced for samples in Human, Chicken and A.
thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing
technology from Helicos Biosciences which locates 3-prime polyadenylation sites
to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine
examples are illustrated where this combination of data allowed: (1) gene and
3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb);
(2) disentangling of gene expression in complex regions; (3) clearer
interpretation of small RNA expression and (4) identification of novel genes.
While the specific examples displayed here may become obsolete as genome
sequences and their annotations are refined, the principles laid out in this
paper will be of general use both to those annotating genomes and those seeking
to interpret existing publically available annotations in the context of their
own experimental dataComment: 44 pages, 9 figure
In Situ Proteolysis to Generate Crystals for Structure Determination: An Update
For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13–15 crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of protease to crystallization trials—in situ proteolysis—significantly increased the number of proteins in a given set that produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate). Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded deposited crystal structures of 2.8 Å resolution or better, for an overall 12.6% success rate, and at least ten more yielded well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects
Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study
Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
In Situ Proteolysis to Generate Crystals for Structure Determination: An Update
For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13–15 crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of protease to crystallization trials—in situ proteolysis—significantly increased the number of proteins in a given set that produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate). Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded deposited crystal structures of 2.8 Å resolution or better, for an overall 12.6% success rate, and at least ten more yielded well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects
Threshold effect of foreign direct investment on environmental degradation
The aim of this paper is to investigate the threshold effect of foreign direct investment (FDI) on environmental degradation. In empirical analysis, FDI and environmental degradation are jointly determined under the given threshold variable and other exogenous variables. Using carbon dioxide (CO2) emissions per capita as a proxy for environmental degradation, the results show that increasing FDI worsens CO2 emissions after a threshold level of corruption has been reached. Our results demonstrate that increasing FDI will increase CO2 emissions when the degree of corruptibility is relatively high. The study suggests that further FDI and improved environmental quality are competing rather than compatible objectives in high-corruption countries and are compatible rather than competing objectives in low-corruption countries. Higher trade liberalization in low-corruption countries could contribute to negative environmental consequences because of the increased output or economic activity which results from increased trade. The robustness estimation confirms the evidence that pollution and economic development increase together up to a certain income level, after which the trend reverses.info:eu-repo/semantics/publishedVersio
- …