122 research outputs found

    A geometrical approach to robust minimum variance beamforming

    Get PDF
    This paper presents a highly efficient geometrical approach for designing robust minimum variance (RMV) beamformers against uncertainties in the array steering vector. Instead of the conventional approach of modeling the uncertainty region by a convex closed space, the proposed algorithm exploits the optimization constraint and shows that optimization only needs to be done on the intersection of a hyperplane and a second-order cone (SOC). The problem can then be cast as a second-order cone programming (SOCP) problem so as to enjoy the high efficiency of a class of interior point algorithms. A general case of modeling the uncertainties of an array using complex-plane trapezoids is investigated. The efficiency and tightness of the proposed method over other schemes are demonstrated with numerical examples.published_or_final_versio

    A second-order cone bounding algorithm for robust minimum variance beamforming

    Get PDF
    We present a geometrical approach for designing robust minimum variance (RMV) beamformers against steering vector uncertainties. Conventional techniques enclose the uncertainties with a convex set; the antenna weights are then designed to minimize the maximum array output variance over this set. In contrast, we propose to cover the uncertainty by a second-order cone (SOC). The optimization problem, with optional robust interference rejection constraints, then reduces to the minimization of the array output variance over the intersection of the SOC and a hyperplane. This is cast into a standard second-order cone programming (SOCP) problem and solved efficiently. We study the computationally efficient case wherein the uncertainties are embedded in complex-plane trapezoids. The idea is then extended to arbitrary uncertainty geometries. Effectiveness of the proposed approach over other schemes and its fast convergence in signal power estimation are demonstrated with numerical examples. © Springer-Verlag Berlin Heidelberg 2005.postprin

    A fast Newton/Smith algorithm for solving algebraic Riccati equations and its application in model order reduction

    Get PDF
    A very fast Smith-method-based Newton algorithm is introduced for the solution of large-scale continuous-time algebraic Riccati equations (CAREs). When the CARE contains low-rank matrices, as is common in the modeling of physical systems, the proposed algorithm, called the Newton/Smith CARE or NSCARE algorithm, offers significant computational savings over conventional CARE solvers. Effectiveness of the algorithm is demonstrated in the context of VLSI model order reduction wherein stochastic balanced truncation (SBT) is used to reduce large-scale passive circuits. It is shown that the NSCARE algorithm exhibits guaranteed quadratic convergence under mild assumptions. Moreover, two large-sized matrix factorizations and one large-scale singular value decomposition (SVD) necessary for SBT can be omitted by utilizing the Smith method output in each Newton iteration, thereby significantly speeding up the model reduction process.published_or_final_versio

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    p53 modeling as a route to mesothelioma patients stratification and novel therapeutic identification

    Get PDF
    Background Malignant pleural mesothelioma (MPM) is an orphan disease that is difficult to treat using traditional chemotherapy, an approach which has been effective in other types of cancer. Most chemotherapeutics cause DNA damage leading to cell death. Recent discoveries have highlighted a potential role for the p53 tumor suppressor in this disease. Given the pivotal role of p53 in the DNA damage response, here we investigated the predictive power of the p53 interactome model for MPM patients’ stratification. Methods We used bioinformatics approaches including omics type analysis of data from MPM cells and from MPM patients in order to predict which pathways are crucial for patients’ survival. Analysis of the PKT206 model of the p53 network was validated by microarrays from the Mero-14 MPM cell line and RNA-seq data from 71 MPM patients, whilst statistical analysis was used to identify the deregulated pathways and predict therapeutic schemes by linking the affected pathway with the patients’ clinical state. Results In silico simulations demonstrated successful predictions ranging from 52 to 85% depending on the drug, algorithm or sample used for validation. Clinical outcomes of individual patients stratified in three groups and simulation comparisons identified 30 genes that correlated with survival. In patients carrying wild-type p53 either treated or not treated with chemotherapy, FEN1 and MMP2 exhibited the highest inverse correlation, whereas in untreated patients bearing mutated p53, SIAH1 negatively correlated with survival. Numerous repositioned and experimental drugs targeting FEN1 and MMP2 were identified and selected drugs tested. Epinephrine and myricetin, which target FEN1, have shown cytotoxic effect on Mero-14 cells whereas marimastat and batimastat, which target MMP2 demonstrated a modest but significant inhibitory effect on MPM cell migration. Finally, 8 genes displayed correlation with disease stage, which may have diagnostic implications. Conclusions Clinical decisions related to MPM personalized therapy based on individual patients’ genetic profile and previous chemotherapeutic treatment could be reached using computational tools and the predictions reported in this study upon further testing in animal models

    Diversification and Molecular Evolution of ATOH8, a Gene Encoding a bHLH Transcription Factor

    Get PDF
    ATOH8 is a bHLH domain transcription factor implicated in the development of the nervous system, kidney, pancreas, retina and muscle. In the present study, we collected sequence of ATOH8 orthologues from 18 vertebrate species and 24 invertebrate species. The reconstruction of ATOH8 phylogeny and sequence analysis showed that this gene underwent notable divergences during evolution. For those vertebrate species investigated, we analyzed the gene structure and regulatory elements of ATOH8. We found that the bHLH domain of vertebrate ATOH8 was highly conserved. Mammals retained some specific amino acids in contrast to the non-mammalian orthologues. Mammals also developed another potential isoform, verified by a human expressed sequence tag (EST). Comparative genomic analyses of the regulatory elements revealed a replacement of the ancestral TATA box by CpG-islands in the eutherian mammals and an evolutionary tendency for TATA box reduction in vertebrates in general. We furthermore identified the region of the effective promoter of human ATOH8 which could drive the expression of EGFP reporter in the chicken embryo. In the opossum, both the coding region and regulatory elements of ATOH8 have some special features, such as the unique extended C-terminus encoded by the third exon and absence of both CpG islands and TATA elements in the regulatory region. Our gene mapping data showed that in human, ATOH8 was hosted in one chromosome which is a fusion product of two orthologous chromosomes in non-human primates. This unique chromosomal environment of human ATOH8 probably subjects its expression to the regulation at chromosomal level. We deduce that the great interspecific differences found in both ATOH8 gene sequence and its regulatory elements might be significant for the fine regulation of its spatiotemporal expression and roles of ATOH8, thus orchestrating its function in different tissues and organisms

    Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    Get PDF
    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk

    Integrative mapping analysis of chicken microchromosome 16 organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16), particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci) mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent <it>MHC </it>complexes <it>B </it>and <it>Y</it>. In addition, GGA16 carries the ribosomal RNA (<it>rRNA</it>) genes cluster, also known as the <it>NOR </it>(nucleolus organizer region). The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers.</p> <p>Results</p> <p>We developed 79 STS (Sequence Tagged Site) markers to build a physical RH (radiation hybrid) map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome) library with markers for the <it>MHC-B</it>, <it>MHC-Y </it>and <it>rRNA </it>complexes. Selected clones were used to perform high resolution FISH (Fluorescent <it>In Situ </it>Hybridization) mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two <it>MHC </it>complexes.</p> <p>Conclusions</p> <p>The three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two <it>MHC </it>complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to be studied in more detail.</p

    HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins

    Get PDF
    HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2). We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes
    corecore