35 research outputs found

    Modeling the skin pattern of fishes

    Get PDF
    Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed

    Timelike surfaces with zero mean curvature in Minkowski 4-space

    Full text link
    On any timelike surface with zero mean curvature in the four-dimensional Minkowski space we introduce special geometric (canonical) parameters and prove that the Gauss curvature and the normal curvature of the surface satisfy a system of two natural partial differential equations. Conversely, any two solutions to this system determine a unique (up to a motion) timelike surface with zero mean curvature so that the given parameters are canonical. We find all timelike surfaces with zero mean curvature in the class of rotational surfaces of Moore type. These examples give rise to a one-parameter family of solutions to the system of natural partial differential equations describing timelike surfaces with zero mean curvature.Comment: 15 page
    corecore