298 research outputs found

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings

    Efficient representations for set-sharing analysis

    Full text link
    Abstract is not available

    Two efficient representations for set-sharing analysis in logic programs

    Get PDF
    Set-Sharing analysis, the classic Jacobs and Langen's domain, has been widely used to infer several interesting properties of programs at compile-time such as occurs-check reduction, automatic parallelization, flnite-tree analysis, etc. However, performing abstract uniflcation over this domain implies the use of a closure operation which makes the number of sharing groups grow exponentially. Much attention has been given in the literature to mitĂ­gate this key inefficiency in this otherwise very useful domain. In this paper we present two novel alternative representations for the traditional set-sharing domain, tSH and tNSH. which compress efficiently the number of elements into fewer elements enabling more efficient abstract operations, including abstract uniflcation, without any loss of accuracy. Our experimental evaluation supports that both representations can reduce dramatically the number of sharing groups showing they can be more practical solutions towards scalable set-sharing

    Breathers in Josephson junction ladders: resonances and electromagnetic waves spectroscopy

    Get PDF
    We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EEs) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant steps and various sharp switchings (voltage jumps) in the current-voltage characteristics. Moreover, the power of ac oscillations away from the breather center (the breather tail) displays singularities as the externally applied dc bias decreases. All these features can be mapped to the spectrum of EEs that has been derived analytically and numerically. Using an improved analysis of the breather tail, a spectroscopy of the EEs is developed. The nature of breather instability driven by localized EEs is established.Comment: 15 pages, 13 figure

    Symmetry broken motion of a periodically driven Brownian particle: nonadiabatic regime

    Full text link
    We report a theoretical study of an overdamped Brownian particle dynamics in the presence of both a spatially modulated one-dimensional periodic potential and a periodic alternating force (AF). As the periodic potential has a low symmetry (a ratchet potential) the Brownian particle displays a broken symmetry motion with a nonzero time average velocity. By making use of the Green function method and a mapping to the theory of Brillouin bands the probability distribution of the particle coordinate is derived and the nonlinear dependence of the macroscopic velocity on the frequency and the amplitude of AF is found. In particular, our theory allows to go beyond the adiabatic limit and to explain the peculiar reversal of the velocity sign found previously in the numerical analysis.Comment: 4 pages, 2 figure

    Penentration of dynamic localized states in DC-driven Josephson junction ladders by discrete jumps

    Full text link
    We give a theoretical study of unusual resistive (dynamic) localized states in anisotropic Josephson junction ladders, driven by a DC current at one edge. These states comprise nonlinearly coupled rotating Josephson phases in adjacent cells, and with increasing current they are found to expand into neighboring cells by a sequence of sudden jumps. We argue that the jumps arise from instabilities in the ladder's superconducting part, and our analytic expressions for the peculiar voltage (rotational frequency) ratios and I-V curves are in very good agreement with direct numerical simulations.Comment: Accepted, Physical Review E. 5 pages, 5 figures. Revtex, with postscript figure

    Self-consistent theory of intrinsic localized modes: application to monatomic chain

    Full text link
    A theory of intrinsic localized modes (ILMs) in anharmonic lattices is developed, which allows one to reduce the original nonlinear problem to a linear problem of small variations of the mode. This enables us to apply the Lifshitz method of the perturbed phonon dynamics for the calculations of ILMs. In order to check the theory, the ILMs in monatomic chain are considered. A comparison of the results with the corresponding molecular dynamics calculations shows an excellent agreement.Comment: 9 pages, 1 figure, 1 tabl

    Observation of breathers in Josephson ladders

    Full text link
    We report on the observation of spatially-localized excitations in a ladder of small Josephson junctions. The excitations are whirling states which persist under a spatially-homogeneous force due to the bias current. These states of the ladder are visualized using a low temperature scanning laser microscopy. We also compute breather solutions with high accuracy in corresponding model equations. The stability analysis of these solutions is used to interpret the measured patterns in the I-V characteristics

    Broken symmetries and directed collective energy transport

    Get PDF
    We study the appearance of directed energy current in homogeneous spatially extended systems coupled to a heat bath in the presence of an external ac field E(t). The systems are described by nonlinear field equations. By making use of a symmetry analysis we predict the right choice of E(t) and obtain directed energy transport for systems with a nonzero topological charge Q. We demonstrate that the symmetry properties of motion of topological solitons (kinks and antikinks) are equivalent to the ones for the energy current. Numerical simulations confirm the predictions of the symmetry analysis and, moreover, show that the directed energy current drastically increases as the dissipation parameter α\alpha reduces. Our results generalize recent rigorous theories of currents generated by broken time-space symmetries to the case of interacting many-particle systems.Comment: 4 pages, 2 figure

    Discrete breathers in classical spin lattices

    Full text link
    Discrete breathers (nonlinear localised modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. In the present paper we study the dynamics of classical spins interacting via Heisenberg exchange on spatial dd-dimensional lattices (with and without the presence of single-ion anisotropy). We show that discrete breathers exist for cases when the continuum theory does not allow for their presence (easy-axis ferromagnets with anisotropic exchange and easy-plane ferromagnets). We prove the existence of localised excitations using the implicit function theorem and obtain necessary conditions for their existence. The most interesting case is the easy-plane one which yields excitations with locally tilted magnetisation. There is no continuum analogue for such a solution and there exists an energy threshold for it, which we have estimated analytically. We support our analytical results with numerical high-precision computations, including also a stability analysis for the excitations.Comment: 15 pages, 12 figure
    • …
    corecore