research

Symmetry broken motion of a periodically driven Brownian particle: nonadiabatic regime

Abstract

We report a theoretical study of an overdamped Brownian particle dynamics in the presence of both a spatially modulated one-dimensional periodic potential and a periodic alternating force (AF). As the periodic potential has a low symmetry (a ratchet potential) the Brownian particle displays a broken symmetry motion with a nonzero time average velocity. By making use of the Green function method and a mapping to the theory of Brillouin bands the probability distribution of the particle coordinate is derived and the nonlinear dependence of the macroscopic velocity on the frequency and the amplitude of AF is found. In particular, our theory allows to go beyond the adiabatic limit and to explain the peculiar reversal of the velocity sign found previously in the numerical analysis.Comment: 4 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 17/03/2019