101 research outputs found
A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow
© 2016 Author(s). The study of inflammatory bowel disease, including Ulcerative Colitis and Crohn's Disease, has relied largely upon the use of animal or cell culture models; neither of which can represent all aspects of the human pathophysiology. Presented herein is a dual flow microfluidic device which holds full thickness human intestinal tissue in a known orientation. The luminal and serosal sides are independently perfused ex vivo with nutrients with simultaneous waste removal for up to 72 h. The microfluidic device maintains the viability and integrity of the tissue as demonstrated through Haematoxylin & Eosin staining, immunohistochemistry and release of lactate dehydrogenase. In addition, the inflammatory state remains in the tissue after perfusion on the device as determined by measuring calprotectin levels. It is anticipated that this human model will be extremely useful for studying the biology and tes ting novel interventions in diseased tissue
Small bowel MR enterography: problem solving in Crohn’s disease
Magnetic resonance enterography (MRE) is fast becoming the first-line radiological investigation to evaluate the small bowel in patients with Crohn’s disease. It can demonstrate both mural and extramural complications. The lack of ionizing radiation, together with high-contrast resolution, multiplanar capability and cine-imaging make it an attractive imaging modality in such patients who need prolonged follow-up. A key question in the management of such patients is the assessment of disease activity. Clinical indices, endoscopic and histological findings have traditionally been used as surrogate markers but all have limitations. MRE can help address this question. The purpose of this pictorial review is to (1) detail the MRE protocol used at our institution; (2) describe the rationale for the MR sequences used and their limitations; (3) compare MRE with other small bowel imaging techniques; (4) discuss how MRE can help distinguish between inflammatory, stricturing and penetrating disease, and thus facilitate management of this difficult condition
Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece
Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship
hMSH2 is the most commonly mutated MMR gene in a cohort of Greek HNPCC patients
Germline mutations in genes encoding proteins involved in DNA mismatch repair are responsible for the autosomal dominantly inherited cancer predisposition syndrome hereditary nonpolyposis colorectal cancer (HNPCC). We describe here analysis of hMLH1 and hMSH2 in nine Greek families referred to our centre for HNPCC. A unique disease-causing mutation has been identified in seven out of nine (78%) families. The types of mutations identified are nonsense (five out of seven) (hMLH1: E557X, R226X; hMSH2: Q158X, R359X and R711X), a 2 bp deletion (hMSH2 1704_1705delAG) and a 2.2 kb Alu-mediated deletion encompassing exon 3 of the hMSH2 gene. The majority of mutations identified in this cohort are found in hMSH2 (77.7%). Furthermore, four of the mutations identified are novel. Finally, a number of novel benign variations were observed in both genes. This is the first report of HNPCC analysis in the Greek population, further underscoring the differences observed in the various geographic populations
Rare mutations predisposing to familial adenomatous polyposis in Greek FAP patients
BACKGROUND: Familial Adenomatous Polyposis (FAP) is caused by germline mutations in the APC (Adenomatous Polyposis Coli) gene. The vast majority of APC mutations are point mutations or small insertions / deletions which lead to truncated protein products. Splicing mutations or gross genomic rearrangements are less common inactivating events of the APC gene. METHODS: In the current study genomic DNA or RNA from ten unrelated FAP suspected patients was examined for germline mutations in the APC gene. Family history and phenotype were used in order to select the patients. Methods used for testing were dHPLC (denaturing High Performance Liquid Chromatography), sequencing, MLPA (Multiplex Ligation – dependent Probe Amplification), Karyotyping, FISH (Fluorescence In Situ Hybridization) and RT-PCR (Reverse Transcription – Polymerase Chain Reaction). RESULTS: A 250 Kbp deletion in the APC gene starting from intron 5 and extending beyond exon 15 was identified in one patient. A substitution of the +5 conserved nucleotide at the splice donor site of intron 9 in the APC gene was shown to produce frameshift and inefficient exon skipping in a second patient. Four frameshift mutations (1577insT, 1973delAG, 3180delAAAA, 3212delA) and a nonsense mutation (C1690T) were identified in the rest of the patients. CONCLUSION: Screening for APC mutations in FAP patients should include testing for splicing defects and gross genomic alterations
Helicobacter pylori infection might be responsible for the interconnection between type 1 diabetes and autoimmune thyroiditis
<p>Abstract</p> <p>Background</p> <p>Higher serological prevalence rates of helicobacter pylori (H. pylori) infection have been reported in patients with type 1 diabetes (T1DM) and autoimmune thyroiditis (AT). Patients with T1DM are at increased risk for developing other autoimmune diseases, most commonly AT. It is unknown whether H. pylori infection could explain the high prevalence of thyroid autoantibodies and AT in T1DM. The aim of the current study was to evaluate anti-thyroid peroxidase (anti-TPO) and anti-thyroglobulin (anti-Tg) autoantibodies in correlation with anti-H. pylori IgG and IgA in young patients with T1DM.</p> <p>Methods</p> <p>Anti-H. Pylori IgG, IgA, anti-TPO and anti-Tg antibodies titers were measured in 162 euthyroid patients with T1DM and 80 healthy controls matched for age, sex and socioeconomic status.</p> <p>Results</p> <p>Seroprevalence of H. pylori was significantly higher in patients with T1DM than in healthy controls; 79% vs. 51.2%, p < 0.001. Anti H. pylori IgG was positive in 61.1% of patients with T1DM and 30% of controls, p < 0.001, anti H. pylori IgA was positive in 74% of patients with T1DM and 32.5% of controls, p < 0.001. Thyroid autoimmunity was also significantly higher in patients with T1DM than in controls; 56.7% vs. 6.2%, p < 0.001. Anti-TPO was positive in 25.3% of patients with T1DM and 3.7% of controls, p < 0.001, anti-Tg was positive in 47.5% of patients with T1DM and 6.2% of controls, p < 0.001. With simple and multiple regression analysis anti-H. pylori IgG and IgA titers were positively and significantly correlated with Anti-TPO and anti-Tg titers in patients with T1DM.</p> <p>Conclusion</p> <p>our results support the idea of a connection between H. pylori infection and the occurrence of anti-TPO, anti-Tg autoantibodies and AT in young patients with T1DM. So, H. pylori infection could be considered as an environmental trigger for development of AT in T1DM. Young patients with T1DM should be screened for H. pylori infection.</p
The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites
A holistic study was conducted to investigate the combined effect of three different pre-mixing processes, namely mechanical mixing, ultrasonication and centrifugation, on mechanical and thermal properties of epoxy/clay nanocomposites reinforced with different platelet-like montmorillonite (MMT) clays (Cloisite Na+, Cloisite 10A, Cloisite 15 or Cloisite 93A) at clay contents of 3–10 wt%. Furthermore, the effect of combined pre-mixing processes and material formulation on clay dispersion and corresponding material properties of resulting composites was investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), flexural and Charpy impact tests, Rockwell hardness tests and differential scanning calorimetry (DSC). A high level of clay agglomeration and partially intercalated/exfoliated clay structures were observed regardless of clay type and content. Epoxy/clay nanocomposites demonstrate an overall noticeable improvement of up to 10 % in the glass transition temperature (Tg) compared to that of neat epoxy, which is interpreted by the inclusion of MMT clays acting as rigid fillers to restrict the chain mobility of epoxy matrices. The impact strength of epoxy/clay nanocomposites was also found to increase by up to 24 % with the addition of 3 wt% Cloisite Na+ clays. However, their flexural strength and hardness diminished when compared to those of neat epoxy, arising from several effects including clay agglomeration, widely distributed microvoids and microcracks as well as weak interfacial bonding between clay particles and epoxy matrices, as confirmed from TEM and SEM results. Overall, it is suggested that an improved technique should be used for the combination of pre-mixing processes in order to achieve the optimal manufacturing condition of uniform clay dispersion and minimal void contents
- …