817 research outputs found

    Cyclic fatigue testing of surface mooring hardware for the Arabian Sea mixed layer dynamics experiment

    Get PDF
    The Arabian Sea is strongly forced by monsoon winds. Surface moorings deployed in the Arabian Sea are exposed to high winds and large waves. The waves, generated by strong wind events, impose a dynamic load on all mooring components. The dynamic cycling of mooring components can be so severe that ultimate strength considerations are superseded by the fatigue properties of the standard hardware components. Concerns about all in-line mooring components and their fatigue endurance dictated the need for an independent series of cyclic fatigue tests. The components tested included shackles of various sizes and configurations, wire rope, instrument cages, chain, and a variety of interconnecting links such as weldless sling links and end links. The information gained from these tests was used in the design of the surface moorings deployed in the Arabian Sea by the Upper Ocean Processes group of the Woods Hole Oceanographic Institution. The results of the cyclic fatigue tests conducted in support of the Arabian Sea surface mooring design effort are presented in this report. Recommendations are made with regard to all in-line components for surface moorings where dynamic conditions might be encountered for extended periods. The fatigue test results from shackles, and sling links were compiled to generate an SIN diagram where the cyclic stress amplitude is plotted versus the number of cycles to failure. In addition, the wire rope test results were compiled with historical wire rope data from US steel to generate a SIN diagram for torque balanced 3x19 wire rope. These results can be used in conjunction with future design efforts.Funding was provided by the Office of Naval Research through Grant No. N00014-94-1-0161

    Arabian Sea mixed layer dynamics experiment : mooring deployment cruise report R/V Thomas Thompson cruise number 46, 14 April-29 April 1995

    Get PDF
    This report describes in a general manner the work that took place during the R/V Thomas Thompson cruise number 46 which was the mooring turnaround cruise for the moored array program. A detailed description of the WHOI surface mooring and its instrumentation is provided. Information about the XBT and CTD data and near-surface temperature data collected during the cruise is also included.Funding was provided by the Office of Naval Research through Grant No. NOOOl4-94-1-0161

    The Subduction experiment : mooring field program and data summary ; Sub 1 June 1991-February 1992 ; Sub 2 February 1992-October 1992 ; Sub 3 October 1992-June 1993

    Get PDF
    An array of five surface moorings carrying meteorological and oceanographic instrumentation was deployed for a period of two years beginning in June 1991 as part of an Office of Naval Research (ONR) funded Subduction experiment. Three eight month deployments were carried out. The five mooring locations were 18°N 34°W, 18°N 22°W, 25.5°N 29°W, 33°N 22°W and 33°N 34°W. Two Woods Hole Oceanographic Institution (WHOI) and three Scripps Institution of Oceanography (SIO) moorings collected oceanographic and meteorological data, using a 3-meter discus or 2-meter toroid buoy and multiple Vector Measuring Current Meters (VMCMs), an Acoustic Doppler Current Profiler (ADCP) and Brancker temperature recorders (tpods). The surface buoys carried a Vector Averaging Wind Recorder (VAWR) and, on four of the five moorings, an Improved Meteorological Recorder (IMET) which measured wind speed and wind direction, sea surface temperature, air temperature, short wave radiation, barometric pressure and relative humidity. The IMET also measured precipitation. The VMCMs, ADCP and tpods, placed at depths 1 m to 3500 m, measured oceanic velocities and temperatures. This report presents meteorological and oceanographic data from the WHOI Upper Ocean Processes Group (UOP) and the SIO Instrument and Development Group (lDG) instruments and contains summaries of the instruments used, their depths, mooring positions, mooring deployment and recovery times, and data return. Appendices contain information on supplementary Subduction data sets.Funding provided by the Office of Naval Research under Contract No. N00014-90-J-1490

    Pan American Climate Study (PACS) mooring recovery and deployment cruise report : R/V Thomas Thompson cruise number 73, 28 November to 26 December 1997

    Get PDF
    Three surface moorings were recovered and redeployed during R/V Thomas Thompson cruise number 73 in the eastern equatorial Pacific as pan of the Pan American Climate Study (PACS). PACS is a NOAA-funded study with the goal of investigating links between sea-surface temperature variability in the tropical oceans near the Americas and climate over the American continents. The three moorings were deployed near 125°W, spanning the strong meridional sea-surface temperature gradient associated with the cold tongue south of the equator and the warmer ocean north of the equator, near the northernmost, summer location of the Intertopical Convergence Zone. The moored array was deployed to improve the understanding of air-sea fluxes and of the processes that control the evolution of the sea surface temperature field in the region. Two surface moorings, located at 3°S, 125°W and lO°N, 125°W, belonging to the Upper Ocean Processes (UOP) Group at the Woods Hole Oceanographic Institution (WHOI), were recovered after being on station for eight months and redeployed. Two eight-month deployments were planned. A third mooring deployed at the equator and 128°W by the Ocean Circulation Group at the University of South Florida (USF) was also recovered and redeployed. The USF mooring, unfortunately, had to be recovered immediately following redeployment due to a problem with the buoy and instrumentation. The buoys of the two WHOI moorings were each equipped with meteorological instrumentation, including a Vector Averaging Wind Recorder (VAWR), and an Improved Meteorological (IMET) system. The WHOI moorings also carried Vector Measuring Current Meters, single point temperature recorders, and conductivity and temperature recorders located in the upper 200 meters of the mooring line. In addition to the instrumentation noted above, a variety of other instruments, including an acoustic current meter, acoustic doppler current meters, bio-optical instrument packages and an acoustic rain gauge, were deployed during the PACS field program. The USF mooring had an IMET system on the surface buoy and for oceanographic instrumentation, two RD Instruments acoustic doppler current profilers (ADCPs), single-point temperature recorders, and conductivity and temperature recorders. Conductivity-temperature-depth (CTD) profiles were made at each mooring site and during the transit between mooring locations. This report describes, in a general manner, the work that took place during R/V Thomas Thompson cruise number 73. A description of the WHOI moored array and instrumentation is provided. Details of the mooring designs and preliminary data from the CTD profies are included.Funding was provided by the National Oceanic and Atmospheric Administration under Contract No. NA66GPO130

    Arabian Sea mixed layer dynamics experiment : mooring deployment cruise report R/V Thomas Thompson cruise number 40, 11 October-25 October 1994

    Get PDF
    An array of surface and subsurface moorings were deployed in the Arabian Sea to provide high quality time series of local forcing and upper ocean currents, temperature, and conductivity in order to investigate the dynamics of the ocean's response to the monsoonal forcing characteristic of the area. The moored array was deployed during R/V Thomas Thompson cruise number 40, One Woods Hole Oceanographic Institution (WHOI) surface mooring, two Scripps Institution of Oceanography (SIO) surface moorings and two University of Washington (UW) Profiling Current Meter moorings were deployed. The moorings were deployed for a period of one year beginning in October 1994 as part of the Office of Naval Research (ONR) funded Arabian Sea experiment. Two six month deployments were planned. The moorings were deployed at 15.5°N 61.5°E (WHOI), 15.7°N 61.3°E (SIO), 15.3°N 61.3°E (SIO), 15.7°N 61.7°E (UW), and 15.3°N 61.7°E (UW). The WHOI surface mooring was outfitted with two meteorological data collection systems. A Vector Averaging Wind Recorder (VAWR) and an IMET system made measurements of wind speed and direction, sea surface temperature, air temperature, short wave radiation, long wave radiation, barometric pressure, relative humidity and precipitation. Subsurface instrumentation included Vector Measuring Current Meters (VMCMs), Multi-Variable Moored Systems (MVMS), conductivity and temperature recorders and single point temperature recorders. Expendable bathythermograph (XBT) data and CTD data were collected while in transit to the site and between mooring locations. This report describes in a general manner the work that took place during R/V Thomas Thompson cruise number 40 which was the initial deployment cruise for this moored array. A detailed description of the WHOI surface mooring and its instrumentation is provided. Information about the XBT and CTD data collected during the cruise is also included.Funding was provided by the Office of Naval Research under Grant No. N00014-94-1-0161

    The effect of charging rate on the graphite electrode of commercial lithium-ion cells : a post-mortem study

    Get PDF
    Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650-type cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, we found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. This non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C

    Tracking system analytic calibration activities for the Mariner Mars 1969 mission

    Get PDF
    Calibration activity of Deep Space Network in support of Mars encounter phase of Mariner Mars 1969 missio

    The horizontal mooring : a two-dimensional array, description of the array, components, instrumentation, deployment and recovery operations

    Get PDF
    A moored two-dimensional array with instrumentation distributed both horizontally and vertically was deployed for 27 days in August 1998 at an 85 meter deep site in Massachusetts Bay near Stellwagon basin. The horizontal mooring consisted of a 160- meter long horizontal element positioned at a depth of 20 meters between two subsurface moorings. Suspended below the horizontal member were five 25-meter long vertical strings. The vertical strings had a horizontal separation of 30 meters and each had instruments at depths of 20, 25, 30, 35, 40 and 45 meters. Instrumentation deployed on the two-dimensional array included acoustic current meters, temperature sensors, conductivity measuring instruments, pressure sensors and motion monitoring packages. This report includes a detailed description of the two-dimensional array, the anchoring system and the instrumentation that were deployed. Also included is a description of the deployment and recovery techniques that were employed as well as an assessment of the performance of the array.Funding was provided by the Office of Naval Research under Grant No. N00014-97-1-0158
    corecore