17 research outputs found

    A new multiplex real-time PCR assay to improve the diagnosis of shellfish regulated parasites of the genus Marteilia and Bonamia

    No full text
    Aquaculture including shellfish production is an important food resource worldwide which is particularly vulnerable to infectious diseases. Marteilia refringens, Bonamia ostreae and Bonamia exitiosa are regulated protozoan parasites infecting flat oysters Ostrea edulis that are endemic in Europe. Although some PCR assays have been already developed for their detection, a formal validation to assess the performances of those tools is often lacking. In order to facilitate the diagnosis of flat oyster regulated diseases, we have developed and evaluated a new multiplex Taqman (R) PCR allowing the detection of both M. refringens and Bonamia sp. parasites in one step. First part of this work consisted in assessing analytical sensitivity and specificity of the new PCR assay. Then, diagnostic performances were assessed by testing a panel of field samples with the new real-time PCR and currently recommended conventional PCR methods for the detection of M. refringens and Bonamia sp. Samples were collected from the main flat oyster production sites in France (N = 386 for M. refringens and N = 349 for B. ostreae). In the absence of gold standard, diagnostic sensitivity and specificity of the new PCR were estimated through Bayesian latent class analysis (DSe 87,2% and DSp 98,4% for the detection M. refringens, DSe 77,5% and DSp 98,4% for the detection of Bonamia sp.). Those results suggest equivalent performances for the detection of Bonamia sp. and an improved sensitivity for the detection of M. refringens compared to commonly used conventional protocols. Finally, the new PCR was evaluated in the context of an inter-laboratory comparison study including 17 European laboratories. Results revealed a very good reproducibility with a global accordance (intralaboratory precision) >96% and a global concordance (inter-laboratory precision) >93% for both targets, demonstrating that this new tool is easily transferable to different laboratory settings. This is the first assay designed to detect both Marteilia refringens and Bonamia sp. in a single step and it should allow reducing the number of analysis to monitor both diseases, and where relevant to demonstrate freedom from infection

    Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas

    No full text
    Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were identified. Conserved amino acid residues and phylogeny reconstruction using the AP2 conserved domain suggest that the classification into 10 major groups used for Arabidopsis and rice is applicable to the cotton ERF family. Based on in silico studies, we predict that group IX ERF genes in cotton are involved in jasmonate (JA), ethylene (ET) and pathogen responses. To test this hypothesis, we analysed the transcript profiles of the group IXa subfamily in the regulation of specific resistance to Xanthomonas campestris pathovar malvacearum. The expression of four members of group IXa was induced on challenge with X. campestris pv. malvacearum. Furthermore, the expression of several ERF genes of group IXa was induced synergistically by JA in combination with ET, suggesting that the encoded ERF proteins may play key roles in the integration of both signals to activate JA- and ET-dependent responses

    Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea)

    No full text
    Arabica coffee (Coffea arabica L.) is a self-compatible perennial allotetraploid species (2n = 4x = 44), whereas Robusta coffee (C. canephora L.) is a self-incompatible perennial diploid species (2n = 2x = 22). C. arabica ((CCEEa)-C-a-E-a-E-a) is derived from a spontaneous hybridization between two closely related diploid coffee species, C. canephora (CC) and C. eugenioides (EE). To investigate the patterns and degree of DNA sequence divergence between the Arabica and Robusta coffee genomes, we identified orthologous bacterial artificial chromosomes (BACs) from C. arabica and C. canephora, and compared their sequences to trace their evolutionary history. Although a high level of sequence similarity was found between BACs from C. arabica and C. canephora, numerous chromosomal rearrangements were detected, including inversions, deletions and insertions. DNA sequence identity between C. arabica and C. canephora orthologous BACs ranged from 93.4% (between E-a and C-a) to 94.6% (between C-a and C). Analysis of eight orthologous gene pairs resulted in estimated ages of divergence between 0.046 and 0.665 million years, indicating a recent origin of the allotetraploid species C. arabica. Analysis of transposable elements revealed differential insertion events that contributed to the size increase in the C-a sub-genome compared to its diploid relative. In particular, we showed that insertion of a Ty1-copia LTR retrotransposon occurred specifically in C. arabica, probably shortly after allopolyploid formation. The two sub-genomes of C. arabica, C-a and E-a, showed sufficient sequence differences, and a whole-genome shotgun approach could be suitable for sequencing the allotetraploid genome of C. arabica

    TOGGLE : toolbox for generic NGS analyses

    Get PDF
    Background: The explosion of NGS (Next Generation Sequencing) sequence data requires a huge effort in Bioinformatics methods and analyses. The creation of dedicated, robust and reliable pipelines able to handle dozens of samples from raw FASTQ data to relevant biological data is a time-consuming task in all projects relying on NGS. To address this, we created a generic and modular toolbox for developing such pipelines. Results: TOGGLE (TOolbox for Generic nGs anaLysEs) is a suite of tools able to design pipelines that manage large sets of NGS softwares and utilities. Moreover, TOGGLE offers an easy way to manipulate the various options of the different softwares through the pipelines in using a single basic configuration file, which can be changed for each assay without having to change the code itself. We also describe one implementation of TOGGLE in a complete analysis pipeline designed for SNP discovery for large sets of genomic data, ready to use in different environments (from a single machine to HPC clusters). Conclusion: TOGGLE speeds up the creation of robust pipelines with reliable log tracking and data flow, for a large range of analyses. Moreover, it enables Biologists to concentrate on the biological relevance of results, and change the experimental conditions easily

    The rise and fall of African rice cultivation revealed by analysis of 246 new genomes

    Get PDF
    African rice (Oryza glaberrima) was domesticated independently from Asian rice. The geographical origin of its domestication remains elusive. Using 246 new whole-genome sequences, we inferred the cradle of its domestication to be in the Inner Niger Delta. Domestication was preceded by a sharp decline of most wild populations that started more than 10,000 years ago. The wild population collapse occurred during the drying of the Sahara. This finding supports the hypothesis that depletion of wild resources in the Sahara triggered African rice domestication. African rice cultivation strongly expanded 2,000 years ago. During the last 5 centuries, a sharp decline of its cultivation coincided with the introduction of Asian rice in Africa. A gene, PROG1, associated with an erect plant architecture phenotype, showed convergent selection in two rice cultivated species, Oryza glaberrima from Africa and Oryza sativa from Asia. In contrast, a shattering gene, SH5, showed selection signature during African rice domestication, but not during Asian rice domestication. Overall, our genomic data revealed a complex history of African rice domestication influenced by important climatic changes in the Saharan area, by the expansion of African agricultural society, and by recent replacement by another domesticated species

    Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L

    No full text
    Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single-nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high-density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora-derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high-density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding
    corecore