21,101 research outputs found

    Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor.

    Get PDF
    Signaling through growth factor receptors controls such diverse cell functions as proliferation, migration, and differentiation. A critical question has been how the activation of these receptors is regulated. Most, if not all, of the known ligands for these receptors are soluble factors. However, as matrix components are highly tissue-specific and change during development and pathology, it has been suggested that select growth factor receptors might be stimulated by binding to matrix components. Herein, we describe a new class of ligand for the epidermal growth factor (EGF) receptor (EGFR) found within the EGF-like repeats of tenascin-C, an antiadhesive matrix component present during organogenesis, development, and wound repair. Select EGF-like repeats of tenascin-C elicited mitogenesis and EGFR autophosphorylation in an EGFR-dependent manner. Micromolar concentrations of EGF-like repeats induced EGFR autophosphorylation and activated extracellular signal-regulated, mitogen-activated protein kinase to levels comparable to those induced by subsaturating levels of known EGFR ligands. EGFR-dependent adhesion was noted when the ligands were tethered to inert beads, simulating the physiologically relevant presentation of tenascin-C as hexabrachion, and suggesting an increase in avidity similar to that seen for integrin ligands upon surface binding. Specific binding to EGFR was further established by immunofluorescence detection of EGF-like repeats bound to cells and cross-linking of EGFR with the repeats. Both of these interactions were abolished upon competition by EGF and enhanced by dimerization of the EGF-like repeat. Such low affinity behavior would be expected for a matrix-tethered ligand; i.e., a ligand which acts from the matrix, presented continuously to cell surface EGF receptors, because it can neither diffuse away nor be internalized and degraded. These data identify a new class of insoluble growth factor ligands and a novel mode of activation for growth factor receptors

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    On the energy efficiency of NOMA for wireless backhaul in multi-tier heterogeneous CRAN

    Get PDF
    This paper addresses the problem of wireless backhaul in a multi-tier heterogeneous cellular network coordinated by a cloud-based central station (CCS), namely heterogeneous cloud radio access network (HCRAN). A non-orthogonal multiple access (NOMA) is adopted in the power domain for improved spectral efficiency and network throughput of the wireless downlink in the HCRAN. We first develop a power allocation for multiple cells of different tiers taking account of the practical power consumption of different cell types and wireless backhaul. By analysing the energy efficiency (EE) of the NOMA for the practical HCRAN downlink, we show that the power available at the cloud, the propagation environment and cell types have significant impacts on the EE performance. In particular, in a large network, the cells located at the cloud edge are shown to suffer from a very poor performance with a considerably degraded EE, which accordingly motivates us to propose an iteration algorithm for determining the maximal number of cells that can be supported in the HCRAN. The results reveal that a double number of cells can be covered in the urban environment compared to those in the shadowed urban environment and more than 1.5 times of the number of microcells can be deployed over the macrocells, while only a half number of cells can be supported when the distance between them increases threefol

    On the Microcanonical Entropy of a Black Hole

    Get PDF
    It has been suggested recently that the microcanonical entropy of a system may be accurately reproduced by including a logarithmic correction to the canonical entropy. In this paper we test this claim both analytically and numerically by considering three simple thermodynamic models whose energy spectrum may be defined in terms of one quantum number only, as in a non-rotating black hole. The first two pertain to collections of noninteracting bosons, with logarithmic and power-law spectra. The last is an area ensemble for a black hole with equi-spaced area spectrum. In this case, the many-body degeneracy factor can be obtained analytically in a closed form. We also show that in this model, the leading term in the entropy is proportional to the horizon area A, and the next term is ln A with a negative coefficient.Comment: 15 pages, 1 figur

    Screening for foetal malformations: performance of routine ultrasonography in the population of the Swiss Canton of Vaud.

    Get PDF
    OBJECTIVE: To determine the sensitivity of ultrasonography in screening for foetal malformations in the pregnant women of the Swiss Canton of Vaud. STUDY DESIGN: Retrospective study over a period of five years. METHOD: We focused our study on 512 major or minor clinically relevant malformations detectable by ultrasonography. We analysed the global sensitivity of the screening and compared the performance of the tertiary centre with that of practitioners working in private practice or regional hospitals. RESULTS: Among the 512 malformations, 181 (35%) involved the renal and urinary tract system, 137 (27%) the heart, 71 (14%) the central nervous system, 50 (10%) the digestive system, 42 (8%) the face and 31 (6%) the limbs. Global sensitivity was 54.5%. The lowest detection rate was observed for cardiac anomalies, with only 23% correct diagnoses. The tertiary centre achieved a 75% detection rate in its outpatient clinic and 83% in referred patients. Outside the referral centre, the diagnostic rate attained 47%. CONCLUSIONS: Routine foetal examination by ultrasonography in a low-risk population can detect foetal structural abnormalities. Apart from the diagnosis of cardiac abnormalities, the results in the Canton of Vaud are satisfactory and justify routine screening for malformations in a low-risk population. A prerequisite is continuing improvement in the skills of ultrasonographers through medical education

    csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation

    Get PDF
    published_or_final_versio

    Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface

    Full text link
    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices and we examine to what extent the nature of the pi end-group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. For all the pi-groups investigated here, we observe rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The experimental current-voltage curves are analyzed with a simple analytical model, from which we extract the energy position of the molecular orbital of the pi-group in resonance with the Fermi energy of the electrodes. We report the experimental studies of the band lineup in these silicon/alkyl-pi conjugated molecule/metal junctions. We conclude that Fermi level pinning at the pi-group/metal interface is mainly responsible for the observed absence of dependence of the rectification effect on the nature of the pi-groups, even though they were chosen to have significant variations in their electronic molecular orbitalsComment: To be published in J. Phys. Chem.
    corecore