36 research outputs found

    Biodiversity, Disparity and Evolvability

    Get PDF
    A key problem in conservation biology is how to measure biological diversity. Taxic diversity (the number of species in a community or in a local biota) is not necessarily the most important aspect, if what most matters is to evaluate how the loss of the different species may impact on the future of the surviving species and communities. Alternative approaches focus on functional diversity (a measure of the distribution of the species among the different 'jobs' in the ecosystem), others on morphological disparity, still others on phylogenetic diversity. There are three major reasons to prioritize the survival of species which provide the largest contributions to the overall phylogenetic diversity. First, evolutionarily isolated lineages are frequently characterized by unique traits. Second, conserving phylogenetically diverse sets of taxa is valuable because it conserves some sort of trait diversity, itself important in so far as it helps maintain ecosystem functioning, although a strict relationships between phylogenetic diversity and functional diversity cannot be taken for granted. Third, in this way we maximize the "evolutionary potential" depending on the evolvability of the survivors. This suggests an approach to conservation problems focussed on evolvability, robustness and phenotypic plasticity of developmental systems in the face of natural selection: in other terms, an approach based on evolutionary developmental biology

    The future of osteoarthritis therapeutics: targeted pharmacological therapy

    Get PDF
    Osteoarthritis (OA) is one of the most common forms of degenerative joint disease and a major cause of pain and disability affecting the aging population. It is estimated that more than 20 million Americans and 35 to 40 million Europeans suffer from OA. Analgesics and non-steroidal anti-inflammatory drugs (NSAIDs) are the only therapeutic treatment options for OA. Effective pharmacotherapy for OA, capable of restoring the original structure and function of damaged cartilage and other synovial tissue, is urgently needed, and research into such disease-modifying osteoarthritis drugs (DMOADs) is in progress. This is the first of three reviews focusing on OA therapeutics. This paper provides an overview of current research into potential structure-modifying drugs and more appropriately targeted pharmacological therapy. The challenges and opportunities in this area of research and development are reviewed, covering the most up-to-date initiatives, trends, and topics
    corecore