21 research outputs found

    Amyloid β 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD+ /NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aβ-induced hypometabolism

    NT2 Derived Neuronal and Astrocytic Network Signalling

    Get PDF
    A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality

    The Interaction between the First Transmembrane Domain and the Thumb of ASIC1a Is Critical for Its N-Glycosylation and Trafficking

    Get PDF
    Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly

    Spontaneously opening GABA receptors play a significant role in neuronal signal filtering and integration

    Get PDF
    Acknowledgements This work was supported by The Rosetrees Trust Research Grant A1066, RS MacDonald Seedcorn Award and Wellcome Trust—UoE ISSF Award to S.S. The authors thank Prof. David Wyllie (University of Edinburgh) and Prof. Dmitri Rusakov (UCL) for their valuable suggestions on paper preparation.Peer reviewedPublisher PD

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels

    No full text
    Item does not contain fulltextPituitary melanotrope cells are neuroendocrine signal transducing cells that translate physiological stimuli into adaptive hormonal responses. In this translation process, Ca2+ channels play essential roles. We have characterised which types of Ca2+ current are present in melanotropes of the amphibian Xenopus laevis, using whole-cell, voltage-clamp, patch-clamp experiments and specific blockers of the various current types. Running an activation current-voltage relationship protocol from a holding potential (HP) of -80 mV/or -110 mV, shows that Xenopus melanotropes possess only high-voltage activated (HVA) Ca2+ currents. Steady-state inactivation protocols reveal that no inactivation occurs at -80 mV, whereas 30% of the current is inactivated at -30 mV. We determined the contribution of individual channel types to the total HVA Ca2+ current, examining the effect of each channel blocker at an HP of -80 mV and -30 mV. At -80 mV, omega-conotoxin GVIA, omega-agatoxin IVA, nifedipine and SNX-482 inhibit Ca2+ currents by 21.8 +/- 4.1%, 26.1 +/- 3.1%, 24.2 +/- 2.4% and 17.9 +/- 4.7%, respectively. At -30 mV, omega-conotoxin GVIA, nifedipine and omega-agatoxin IVA inhibit Ca2+ currents by 33.8 +/- 3.0, 24.2 +/- 2.6 and 16.0 +/- 2.8%, respectively, demonstrating that these blockers substantially inhibit part of the Ca2+ current, independently from the HP. We have previously demonstrated that omega-conotoxin GVIA can block Ca2+ oscillations and steps. We now show that nifedipine and omega-agatoxin IVA do not affect the intracellular Ca2+ dynamics, whereas SNX-482 reduces the Ca2+ step amplitude. We conclude that Xenopus melanotrope cells express all four major types of HVA Ca2+ channel, as well as the resulting currents, but no low-voltage activated channels. The results provide the basis for future studies on the complex regulation of channel-mediated Ca2+ influxes into this neuroendocrine cell type as a function of its role in the animal's adaptation to external challenges
    corecore