283 research outputs found

    INFLUENCE OF HYDRATED SODIUM CALCIUM ALUMINOSILICATE AND ACTIVATED CHARCOAL ON THE PHARMACOKINETICS OF SINGLE PULSE DOSING OF ENROFLOXACIN IN BROILER CHICKEN

    Get PDF
    ABSTRACTObjective: The present study was undertaken to evaluate the interaction kinetics of enrofloxacin, the commonly used antibacterial in poultry withmycotoxin binders namely hydrated sodium calcium aluminosilicate (HSCAS) and activated charcoal (AC), which have become inevitable componentsof poultry feed.Methods: Control group received normal feed free of toxin binder, whereas HSCAS and AC group were supplemented with HSCAS and AC at 0.5% infeed, respectively. Enrofloxacin was administered as single pulse dose (at 10 mg/kg) through drinking water to all the groups. Blood samples werecollected at predetermined time intervals after drug administration, and plasma was separated and analyzed for enrofloxacin concentrations usinghigh-performance liquid chromatography.Results: Significant decrease in area under the plasma concentration-time curve (AUC0-∞)was noticed in AC group when compared to control group(13.90±1.15 vs. 19.67±1.68 mg.h/ml), whereas HSCAS group (16.42±1.24 mg.h/ml) neither differed significantly from AC nor control group. Thevolume of distribution and clearance were significantly high in AC group when compared to control group (8.31±0.89 vs. 6.39±0.13 l/kg; 0.77±0.07 vs.0.53±0.05 l/h/kg). HSCAS group was intermediate and did not differ significantly from the other two groups (8.13±0.45 l/kg; 0.63±0.04 l/h/kg).However, volume of distribution at steady state was significantly high in both AC (10.42±1.09 l/kg) and HSCAS group (9.45±0.48 l/kg) when comparedto control group (7.21±0.20 l/kg). Maximum plasma concentration was significantly low (0.99±0.04, 0.97±0.06, 1.38±0.04 mg/ml) and time to reachmaximum plasma concentration was significantly delayed (7.33±0.42, 6.67±0.67, 4.33±0.67 h) in AC and HSCAS group when compared to controlgroup, respectively. The relative bioavailability was significantly low in both AC and HSCAS group (74.95±10.70, 88.88±15.03%) when comparedto control group. Pharmacokinetic/pharmacodynamic integration revealed that the dose of enrofloxacin (10 mg/kg) was capable of treating onlymoderately sensitive organisms (minimum inhibitory concentration ≤0.125 mg/ml) both in the presence and absence of toxin binder and higherdosage is needed for the less sensitive organism.Conclusion: The study revealed that the administration of enrofloxacin to HSCAS and AC supplemented broilers would lead to decrease in clinicalefficacy and promote the development of antimicrobial resistance. AC was found to interact more with enrofloxacin than HSCAS as observed fromthe PK parameters. Hence, careful adjustment of dosage or withdrawal of the usage of toxin binder containing either HSCAS or AC in feed duringenrofloxacin treatment is recommended.Keywords: Enrofloxacin, Pulse dosing, Hydrated sodium calcium aluminosilicate, Activated charcoal, Interaction kinetics

    Aerodynamic and Heat Transfer Studies on HUB sections of a high pressure turbine blade: summary report

    Get PDF
    The stator and rotor blade hub sections designed for a high pressure turbine stage were studied in detail for their aerodynamic and heat transfer characteristics . The profile sections were tested in the National Aeronautical Laboratory Cascade Tunnels over a range of exit flow Mach numbers . The flow field and heat transfer characteristics of the cascades were also code based on Denton's method and the boundary layer code incorporating K- E turbulence model. The results indicated that there was a scope for improving the blade profile sections for high Mach number applications

    A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots

    Full text link
    The functional renormalization group provides an efficient description of the interplay and competition of correlations on different energy scales in interacting Fermi systems. An exact hierarchy of flow equations yields the gradual evolution from a microscopic model Hamiltonian to the effective action as a function of a continuously decreasing energy cutoff. Practical implementations rely on suitable truncations of the hierarchy, which capture nonuniversal properties at higher energy scales in addition to the universal low-energy asymptotics. As a specific example we study transport properties through a single-level quantum dot coupled to Fermi liquid leads. In particular, we focus on the temperature T=0 gate voltage dependence of the linear conductance. A comparison with exact results shows that the functional renormalization group approach captures the broad resonance plateau as well as the emergence of the Kondo scale. It can be easily extended to more complex setups of quantum dots.Comment: contribution to Les Houches proceedings 2006, Springer styl

    Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study

    Get PDF
    BACKGROUND: Real-time myocardial contrast echocardiography (MCE) is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF) velocity in normal human myocardium. METHODS: Twenty study subjects with normal left ventricular (LV) wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue(®). Following transient microbubble destruction, the contrast replenishment rate (β), reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t) =A (1-e(-β(t-t0))) + C. RESULTS: Quantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery) and RCA (right coronary artery) territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery) bed was poor. Depending on localisation and which frames to be analysed, mean values of [Image: see text] were 0.21–0.69 s(-1), with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p < 0.01). Higher β-values were obtained from end-diastole than end-systole (p < 0.001), values from all-frames analysis lying between. CONCLUSION: Low-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in β suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline

    A methodology for parameter estimation in seaweed productivity modelling

    Get PDF
    This paper presents a combined approach for parameter estimation in models of primary production. The focus is on gross primary production and nutrient assimilation by seaweeds. A database of productivity determinations, biomass and mortality measurements and nutrient uptake rates obtained over one year for Gelidium sesquipedale in the Atlantic Ocean off Portugal has been used. Annual productivity was estimated by harvesting methods, and empirical relationships using mortality/ wave energy and respiration rates have been derived to correct for losses and to convert the estimates to gross production. In situ determinations of productivity have been combined with data on the light climate (radiation periods, intensity, mean turbidity) to give daily and annual productivity estimates. The theoretical nutrient uptake calculated using a 'Redfield ratio' approach and determinations of in situ N and P consumption by the algae during incubation periods have also been compared. The results of the biomass difference and incubation approaches are discussed in order to assess the utility of coefficients determined in situ for parameter estimation in seaweed production models

    A case of endometrial carcinoma with age related hyperkyphosis treated with definitive radiotherapy

    Get PDF
    This report describes a simple brachytherapy procedure in a patient with endometrial cancer with age related hyperkyphosis.  Sixty-eight year-old postmenopausal woman with age related hyperkyphosis presented with endometrial carcinoma, and the patient was not operated on due to associated pelvic deformity. The patient received whole pelvic radiation followed by uterovaginal brachytherapy. Patient was supported with soft pillows to support her exaggerated anterior concavity during brachytherapy procedure and execution. The brachytherapy dose was 6 Gy per fraction per week for 3 weeks using image guidance. This is probably the first reported case of endometrial cancer with age related hyperkyphosis. In spite of the associated skeletal problems, a simple brachytherapy procedure is possible and provides good result.

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde

    Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level

    Get PDF
    Microarray data from cell lines of Non-Small Cell Lung Carcinoma (NSCLC) can be used to look for differences in gene expression between the cell lines derived from different tumour samples, and to investigate if these differences can be used to cluster the cell lines into distinct groups. Dividing the cell lines into classes can help to improve diagnosis and the development of screens for new drug candidates. The micro-array data is first subjected to quality control analysis and then subsequently normalised using three alternate methods to reduce the chances of differences being artefacts resulting from the normalisation process. The final clustering into sub-classes was carried out in a conservative manner such that subclasses were consistent across all three normalisation methods. If there is structure in the cell line population it was expected that this would agree with histological classifications, but this was not found to be the case. To check the biological consistency of the sub-classes the set of most strongly differentially expressed genes was be identified for each pair of clusters to check if the genes that most strongly define sub-classes have biological functions consistent with NSCLC
    corecore