38 research outputs found

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Pressure and pain In Systemic sclerosis/Scleroderma - an evaluation of a simple intervention (PISCES): randomised controlled trial protocol

    Get PDF
    Background: foot problems associated with Systemic Sclerosis (SSc)/Scleroderma have been reported to be both common and disabling. There are only limited data describing specifically, the mechanical changes occurring in the foot in SSc. A pilot project conducted in preparation for this trial confirmed the previous reports of foot related impairment and reduced foot function in people with SSc and demonstrated a link to mechanical etiologies. To-date there have been no formal studies of interventions directed at the foot problems experienced by people with Systemic Sclerosis. The primary aim of this trial is to evaluate whether foot pain and foot-related health status in people with Systemic Sclerosis can be improved through the provision of a simple pressure-relieving insole. Methods: the proposed trial is a pragmatic, multicenter, randomised controlled clinical trial following a completed pilot study. In four participating centres, 140 consenting patients with SSc and plantar foot pain will be randomised to receive either a commercially available pressure relieving and thermally insulating insole, or a sham insole with no cushioning or thermal properties. The primary end point is a reduction in pain measured using the Foot Function Index Pain subscale, 12 weeks after the start of intervention. Participants will complete the primary outcome measure (Foot Function Index pain sub-scale) prior to randomisation and at 12 weeks post randomisation. Secondary outcomes include participant reported pain and disability as derived from the Manchester Foot Pain and Disability Questionnaire and plantar pressures with and without the insoles in situ. Discussion: this trial protocol proposes a rigorous and potentially significant evaluation of a simple and readily provided therapeutic approach which, if effective, could be of a great benefit for this group of patients

    The Potential of N-Rich Plasma-Polymerized Ethylene (PPE:N) Films for Regulating the Phenotype of the Nucleus Pulposus

    Get PDF
    We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated “PPE:N” (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes

    Cross-language measurement equivalence of the Center for Epidemiologic Studies Depression (CES-D) scale in systemic sclerosis: A comparison of Canadian and Dutch patients

    Get PDF
    Contains fulltext : 118230.pdf (publisher's version ) (Open Access)OBJECTIVES: Increasingly, medical research involves patients who complete outcomes in different languages. This occurs in countries with more than one common language, such as Canada (French/English) or the United States (Spanish/English), as well as in international multi-centre collaborations, which are utilized frequently in rare diseases such as systemic sclerosis (SSc). In order to pool or compare outcomes, instruments should be measurement equivalent (invariant) across cultural or linguistic groups. This study provides an example of how to assess cross-language measurement equivalence by comparing the Center for Epidemiologic Studies Depression (CES-D) scale between English-speaking Canadian and Dutch SSc patients. METHODS: The CES-D was completed by 922 English-speaking Canadian and 213 Dutch SSc patients. Confirmatory factor analysis (CFA) was used to assess the factor structure in both samples. The Multiple-Indicator Multiple-Cause (MIMIC) model was utilized to assess the amount of differential item functioning (DIF). RESULTS: A two-factor model (positive and negative affect) showed excellent fit in both samples. Statistically significant, but small-magnitude, DIF was found for 3 of 20 items on the CES-D. The English-speaking Canadian sample endorsed more feeling-related symptoms, whereas the Dutch sample endorsed more somatic/retarded activity symptoms. The overall estimate in depression scores between English and Dutch was not influenced substantively by DIF. CONCLUSIONS: CES-D scores from English-speaking Canadian and Dutch SSc patients can be compared and pooled without concern that measurement differences may substantively influence results. The importance of assessing cross-language measurement equivalence in rheumatology studies prior to pooling outcomes obtained in different languages should be emphasized.8 p
    corecore