1,795 research outputs found
Recommended from our members
A mass media campaign are needed to counter misconceptions about back pain and promote higher value care.
Back pain is saddled by misconceptions that contribute to low-value care and poor outcomes. Many patients and clinicians mistakenly view the spine as fragile, believe that pain equates to damage, and over-emphasise the role and value of rest, imaging, medication, and surgery.1 Guideline-based care will not be embraced if such misconceptions are not countered. Here we provide four arguments for accessible, engaging and convincing education to the public and health professionals
Relic densities including Sommerfeld enhancements in the MSSM
We have developed a general formalism to compute Sommerfeld enhancement (SE)
factors for a multi-state system of fermions, in all possible spin
configurations and with generic long-range interactions. We show how to include
such SE effects in an accurate calculation of the thermal relic density for
WIMP dark matter candidates. We apply the method to the MSSM and perform a
numerical study of the relic abundance of neutralinos with arbitrary
composition and including the SE due to the exchange of the W and Z bosons,
photons and Higgses. We find that the relic density can be suppressed by a
factor of a few in a seizable region of the parameter space, mostly for
Wino-like neutralino with mass of a few TeV, and up to an order of magnitude
close to a resonance.Comment: 23 pages, 7 figures; table 1 corrected and rearranged, numerical
results practically unchanged, matches published versio
Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio
BACKGROUND: We used behavioural and genetic data to investigate the effects of density on male reproductive success in the zebrafish, Danio rerio. Based on previous measurements of aggression and courtship behaviour by territorial males, we predicted that they would sire more offspring than non-territorial males. RESULTS: Microsatellite analysis of paternity showed that at low densities territorial males had higher reproductive success than non-territorial males. However, at high density territorial males were no more successful than non-territorials and the sex difference in the opportunity for sexual selection, based on the parameter I(mates), was low. CONCLUSION: Male zebrafish exhibit two distinct mating tactics; territoriality and active pursuit of females. Male reproductive success is density dependent and the opportunity for sexual selection appears to be weak in this species
CHY representations for gauge theory and gravity amplitudes with up to three massive particles
We show that a wide class of tree-level scattering amplitudes involving
scalars, gauge bosons, and gravitons, up to three of which may be massive, can
be expressed in terms of a Cachazo-He-Yuan representation as a sum over
solutions of the scattering equations. These amplitudes, when expressed in
terms of the appropriate kinematic invariants, are independent of the masses
and therefore identical to the corresponding massless amplitudes.Comment: 20 pages, 1 figure; v2: minor typos corrected, published versio
Non-supersymmetric heterotic model building
We investigate orbifold and smooth Calabi-Yau compactifications of the
non-supersymmetric heterotic SO(16)xSO(16) string. We focus on such Calabi-Yau
backgrounds in order to recycle commonly employed techniques, like index
theorems and cohomology theory, to determine both the fermionic and bosonic 4D
spectra. We argue that the N=0 theory never leads to tachyons on smooth
Calabi-Yaus in the large volume approximation. As twisted tachyons may arise on
certain singular orbifolds, we conjecture that such tachyonic states are lifted
in the full blow-up. We perform model searches on selected orbifold geometries.
In particular, we construct an explicit example of a Standard Model-like theory
with three generations and a single Higgs field.Comment: 1+30 pages latex, 11 tables; v2: references and minor revisions
added, matches version published in JHE
Large N and Bosonization in Three Dimensions
Bosonization is normally thought of as a purely two-dimensional phenomenon,
and generic field theories with fermions in D>2 are not expected be describable
by local bosonic actions, except in some special cases. We point out that 3D
SU(N) gauge theories on R^{1,1} x S^{1}_{L} with adjoint fermions can be
bosonized in the large N limit. The key feature of such theories is that they
enjoy large N volume independence for arbitrary circle size L. A consequence of
this is a large N equivalence between these 3D gauge theories and certain 2D
gauge theories, which matches a set of correlation functions in the 3D theories
to corresponding observables in the 2D theories. As an example, we focus on a
3D SU(N) gauge theory with one flavor of adjoint Majorana fermions and derive
the large-N equivalent 2D gauge theory. The extra dimension is encoded in the
color degrees of freedom of the 2D theory. We then apply the technique of
non-Abelian bosonization to the 2D theory to obtain an equivalent local theory
written purely in terms of bosonic variables. Hence the bosonized version of
the large N three-dimensional theory turns out to live in two dimensions.Comment: 30 pages, 2 tables. v2 minor revisions, references adde
Personal and Societal Health Quality Lost to Tuberculosis
BACKGROUND: In developed countries, tuberculosis is considered a disease with little loss of Quality-Adjusted Life Years (QALYs). Tuberculosis treatment is predominantly ambulatory and death from tuberculosis is rare. Research has shown that there are chronic pulmonary sequelae in a majority of patients who have completed treatment for pulmonary tuberculosis (PTB). This and other health effects of tuberculosis have not been considered in QALY calculations. Consequently both the burden of tuberculosis on the individual and the value of tuberculosis prevention to society are underestimated. We estimated QALYs lost to pulmonary TB patients from all known sources, and estimated health loss to prevalent TB disease. METHODOLOGY/PRINCIPAL FINDINGS: We calculated values for health during illness and treatment, pulmonary impairment after tuberculosis (PIAT), death rates, years-of-life-lost to death, and normal population health. We then compared the lifetime expected QALYs for a cohort of tuberculosis patients with that expected for comparison populations with latent tuberculosis infection and without tuberculosis infection. Persons with culture-confirmed tuberculosis accrued fewer lifetime QALYs than those without tuberculosis. Acute tuberculosis morbidity cost 0.046 QALYs (4% of total) per individual. Chronic morbidity accounted for an average of 0.96 QALYs (78% of total). Mortality accounted for 0.22 QALYs lost (18% of total). The net benefit to society of averting one case of PTB was about 1.4 QALYs. CONCLUSIONS/SIGNIFICANCE: Tuberculosis, a preventable disease, results in QALYs lost owing to illness, impairment, and death. The majority of QALYs lost from tuberculosis resulted from impairment after microbiologic cure. Successful TB prevention efforts yield more health quality than previously thought and should be given high priority by health policy makers. (Refer to Abstracto S1 for Spanish language abstract)
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
CAR-T cell. the long and winding road to solid tumors
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
- …