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1 Introduction

The new representations for tree-level gauge and gravitational amplitudes in arbitrary

spacetime dimensions discovered by Cachazo, He, and Yuan [1, 2], while as yet lacking a

quantum-field-theoretic foundation, have illuminated and unified many previous results.

The tree-level n-gluon amplitude for pure Yang-Mills theory (up to an overall factor pro-

portional to gn−2
YM ) is given by

Agauge = (−1)n−1
∑

{σ}∈solutions

C({σ}) E({ǫ, k, σ})

det′Φ({k, σ})
(1.1)

where {σ} is a set of n points on CP
1, C({σ}) depends on group theory structure constants,

E({ǫ, k, σ}) depends on the momenta and polarizations of the gluons, and det′Φ({k, σ})

is a Jacobian factor defined in section 4. The sum is over the (n − 3)! solutions of the

scattering equations [3]

∑

b 6=a

ka · kb
σa − σb

= 0, σa ∈ CP
1, a = 1, · · · , n . (1.2)

The structure of eq. (1.1) as a sum over products of color- and kinematic-dependent factors

is closely related to BCJ color-kinematic duality [4]. For n = 4, the scattering equations

have a single solution, so that eq. (1.1) implies that the four-gluon amplitude factors into

a color-dependent term and a polarization-dependent term. The factorization of a wide

class of four-point gauge theory amplitudes was first recognized over thirty years ago [5, 6]

following the discovery that radiative gauge theory amplitudes vanish in certain kinematic

regions [7–12].
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The tree-level gravity amplitude (up to an overall factor proportional to κn−2) is

Agrav = (−1)n−1
∑

{σ}∈solutions

E({ǫ, k, σ}) E({ǫ̃, k, σ})

det′Φ({k, σ})
(1.3)

and its structure clearly echoes the double-copy procedure of refs. [4, 13, 14]. The Kawai-

Lewellen-Tye (KLT) relations of tree-level string theory [15] in the field theory limit [16, 17]

also follow from eq. (1.3). In particular, eq. (1.3) implies that the four-graviton amplitude

factors into a pair of gauge-theory partial amplitudes. This has long been known from the

field-theory limit of the four-point closed string amplitude [18] as well as from an explicit

field theory calculation [19]. Many other four-point amplitudes involving gravitons have

also been shown to factor into a pair of gauge theory amplitudes in an arbitrary number

of spacetime dimensions [20–23].

In refs. [24, 25], Cachazo, He, and Yuan extended their results to amplitudes for

massless particles in a variety of theories using dimensional reduction and other techniques.

Other work inspired by these developments includes refs. [26–53].

Most of the attention so far has been focused on amplitudes for massless particles. The

factorization of four-point gauge theory amplitudes found in ref. [5, 6], however, required

that only one of the gauge bosons involved be massless, and the four-point gravitational

amplitudes considered in refs. [20–23] involved massive particles as well. This suggests that

CHY representations may be possible for various amplitudes containing massive particles.

Dolan and Goddard proposed a modification of the scattering equations for massive parti-

cles with equal mass and derived a CHY representation for φ3 theory [32, 39]. In ref. [50],

the scattering equations were generalized to arbitrary masses, and CHY representations

were proposed for gauge theory amplitudes involving a pair of massive scalar particles in the

fundamental representation and an arbitrary number of gluons, as well as for gravitational

amplitudes involving a pair of massive scalar particles and an arbitrary number of gravitons.

In this paper, we derive CHY representations for a large class of tree-level gauge the-

ory and gravitational amplitudes, with up to three massive particles. We require only that

the remaining (massless) particles be flavor-preserving (as is generally the case). Further-

more, we show that these amplitudes, when written in terms of the appropriate kinematic

invariants, are independent of the masses of the particles, and thus identical to purely

massless amplitudes. Our approach is first to show that all the diagrams contributing

to an amplitude with up to three massive particles (with the remaining particles being

flavor-preserving) can be kinematically regarded as the dimensional reduction of diagrams

of purely massless amplitudes, with non-zero momenta in the extra dimensions. Then,

by different choices of the polarization vectors, we can use eqs. (1.1) and (1.3) in higher

dimensions to derive CHY representations for mixed amplitudes in lower dimensions, as

was done in ref. [25]. In this way, we derive a variety of gauge theory amplitudes involving

massive gauge bosons and scalar particles, and gravitational amplitudes involving gravi-

tons, massive gauge particles, and massive scalars. We recover the results of ref. [50] as a

special case.

This paper is structured as follows. In section 2, we show that the propagator matrix

for an amplitude with up to three massive particles has the same rank as that for a purely
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massless amplitude, motivating the search for a CHY-type representation for such ampli-

tudes. In section 3, we derive the scattering equations for amplitudes with up to three

massive particles from massless scattering equations in higher dimensions. In section 4, we

derive a CHY representation for the massive propagator matrix. In section 5, we dimension-

ally reduce massless gauge boson amplitudes to obtain CHY representations for amplitudes

with massive and massless gauge bosons, and mixed amplitudes containing gauge bosons

and adjoint or fundamental scalars. In section 6, we dimensionally reduce pure gravi-

ton amplitudes to obtain CHY representations for mixed amplitudes containing gravitons,

massive or massless gauge bosons, and massive scalars. Section 7 contains our conclusions.

2 Propagator matrix

In this section, we briefly review the propagator matrix that appears in the amplitude

for massless gauge bosons [54]. We then show that the propagator matrix for an n-point

amplitude with up to three massive particles (assuming that the remaining n− 3 particles

are flavor-preserving) is identical to that for an amplitude with all massless particles. Like

the latter, therefore, it has rank (n− 3)!. This in turn suggests the possibility of finding a

CHY representation in terms of a sum over the (n−3)! solutions of the scattering equations

for these amplitudes.

We begin with the tree-level n-gluon amplitude written as a sum over cubic diagrams [4]

Agauge =
∑

i

cini
di

(2.1)

where ci, ni, and di are the color factors, kinematic numerators, and denominators (arising

from the propagators) associated with the diagram. The color factors ci of each of the

cubic diagrams appearing in eq. (2.1) can be rewritten, using Jacobi identities, in terms of

a basis of (n− 2)! color factors [55, 56]

ci =
∑

γ∈Sn−2

Mi,1γnc1γn (2.2)

where γ denotes a permutation of {2, · · · , n− 1} and

c1γn ≡ c1γ(2)···γ(n−1)n ≡
∑

b1,...,bn−3

fa1aγ(2)b1fb1aγ(3)b2 · · · fbn−3aγ(n−1)an . (2.3)

The color factors c1γn are associated with half-ladder diagrams, i.e., diagrams in which

there is a line connecting particles 1 and n to which each of the other particles is directly

connected. The assumption of color-kinematic duality [4] is that the kinematic numerators

ni obey the same Jacobi identities as ci, and therefore can be written in terms of (n− 2)!

half-ladder numerators

ni =
∑

γ∈Sn−2

Mi,1γnn1γn . (2.4)

Eqs. (2.2) and (2.4) can be used to rewrite the amplitude (2.1) as

Agauge =
∑

γ∈Sn−2

∑

δ∈Sn−2

n1γn m(1γn|1δn) c1δn (2.5)
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Figure 1. A cubic diagram in which thin lines denote massless propagators, while the thick lines

denote massive propagators (with possibly different masses).

where we define the entries of the (n− 2)!× (n− 2)! propagator matrix [54]

m(1γn|1δn) =
∑

i

Mi,1γnMi,1δn

di
(2.6)

as the sum (weighted by the denominators 1/di of the diagrams) over those cubic diagrams

that contribute to both c1γn and c1δn.

More generally, we can define the propagator matrix for a gauge theory amplitude with

particles other than gluons by using group theory relations to rewrite the color factors in

terms of a half-ladder basis (for example, see ref. [50] for amplitudes with a pair of particles

in the fundamental representation). Now consider an n-point amplitude with up to three

massive particles, with masses m1, m2, and mn, where the remaining (n − 3) particles

are flavor-preserving. Each of the individual cubic diagrams contributing to the sum (2.1)

can be viewed as a skeleton with three massive lines meeting at a vertex fleshed out with

branches of massless lines emanating from each of the massive lines and from other massless

lines; an example is shown in figure 1. The denominator factors associated with the side

branches are of the form
(

∑

a⊂S

ka

)2

=
∑

a,b⊂S
a 6=b

2ka · kb (2.7)

where S is some subset of the (massless) momenta {3, · · · , n−1}. The denominator factors

associated with the three massive lines are of the form

(

kc +
∑

a⊂S

ka

)2

−m2
c =

(

∑

a⊂S

ka

)2

+
∑

a⊂S

2kc · ka , c ∈ {1, 2, n} . (2.8)

Thus, all of the inverse propagators (2.7) and (2.8) are given by linear combinations of the

kinematic invariants

k1 · ka, k2 · ka, kn · ka, ka · kb, a, b ∈ {3, · · · , n− 1} (2.9)

with no explicit dependence on the masses m1, m2, and mn. (Of course, momentum

conservation can be used to eliminate kn · ka, leaving n(n− 3)/2 independent invariants.)

Because the inverse propagators di, when written in terms of the invariants (2.9),

do not depend on the masses, neither does the propagator matrix (2.6). And since the

(n−2)!×(n−2)! propagator matrix for amplitudes with massless particles has rank (n−3)!

as a consequence of momentum conservation [54], the same is true for the propagator matrix
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for amplitudes with up to three massive particles. This suggests the possibility of expressing

it as a sum over the (n− 3)! solutions of the scattering equations, which we will do in the

next two sections.

On the other hand, if there are four or more massive particles in the amplitude, the rank

of the propagator matrix will generally be larger than (n−3)!. For example, the amplitude

for four massive particles, one of which is flavor-preserving, has a 2× 2 propagator matrix

with non-vanishing determinant, and thus rank two.

3 Scattering equations

In order to obtain CHY representations for amplitudes with massive particles, we first

need the appropriate scattering equations. In this section we show that the scattering

equations for an n-point amplitude with up to three massive particles are identical to, and

therefore have the same set of solutions as, the scattering equations for massless particles.

We also show that the massive scattering equations for amplitudes with up to three massive

particles can be derived from the massless scattering equations in higher dimensions.

The scattering equations for massless particles are given in eq. (1.2). In refs. [32, 39],

Dolan and Goddard proposed a modification of these equations for massive particles with

equal mass. The scattering equations were subsequently generalized [50] for particles with

distinct masses ma:

fa ≡
∑

b 6=a

ka · kb +∆ab

σa − σb
= 0, σa ∈ CP

1, a = 1, · · · , n . (3.1)

This set of equations is invariant under SL(2,C) transformations

σ −→
Aσ +B

Cσ +D
, AD −BC = 1 (3.2)

provided
∑n

a=1 ka = 0 and that ∆ab satisfy the constraints

∆ab = ∆ba,
∑

b 6=a

∆ab = m2
a . (3.3)

Furthermore, when the constraints (3.3) are satisfied, the three sums

n
∑

a=1

fa,

n
∑

a=1

σafa,

n
∑

a=1

σ2
afa (3.4)

vanish identically (i.e., before imposing fa = 0), which implies that only n−3 of the massive

scattering equations (3.1) are independent.

Now consider an amplitude with three massive particles, m1, m2, and mn. The con-

straints (3.3) can be satisfied by choosing

∆12 = ∆21 =
1

2

(

m2
1 +m2

2 −m2
n

)

,

∆2n = ∆n2 =
1

2

(

m2
2 +m2

n −m2
1

)

,
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∆n1 = ∆1n =
1

2

(

m2
n +m2

1 −m2
2

)

(3.5)

with the remaining ∆ab vanishing. Since only n − 3 of the n scattering equations (3.1)

are independent, we can eliminate those for a = 1, 2, and n. Since ∆ab vanishes in the

remaining equations (for a = 3, · · · , n − 1), they are identical to the scattering equations

for massless particles, and hence have the same set of (n− 3)! solutions, when expressed in

terms of the kinematic invariants (2.9). This will be crucial in the remainder of this paper.

Finally, we show that the massive scattering equations (3.1) are precisely the equations

that arise if one regards the massive particles as massless particles in a higher-dimensional

space. In particular, the momentum Ka for a massless particle in (d+M) dimensions can

be written

Ka = (ka|κa) (3.6)

where ka and κa are the components of momentum in d- and M -dimensional subspaces

respectively.1 We will refer to κa as the internal momentum of a particle; the mass of the

particle in d dimensions is given by m2
a = κ2a. The massless scattering equations in (d+M)

dimensions
∑

b 6=a

Ka ·Kb

σa − σb
= 0, a = 1, · · · , n (3.7)

imply that the scattering equations (3.1) hold in d dimensions with

∆ab = − κa · κb (3.8)

and the constraints (3.3) hold automatically by virtue of momentum conservation in the

internal dimensions.

If M = 1, then momentum conservation in the internal space requires
∑n

a=1(±ma) = 0

(for some choice of signs), which is too restrictive for our purposes. If M ≥ 2, however,

there is no constraint on the masses of the particles.

It must be stressed, however, that by no means can every massive amplitude be ob-

tained from the dimensional reduction of a massless amplitude because momentum con-

servation (including conservation of internal momentum) must hold at each vertex of a

diagram, placing severe constraints on the masses of the intermediate particles in any given

diagram. A simple example will suffice to explain the difficulty. Consider the four-point am-

plitude involving ū, d, W+, and Z0. Since the Z0 is flavor- and therefore mass-preserving,

conservation of momentum at any vertex involving the Z0 implies that (κi + κZ)
2 = κ2i ,

where κi is the internal momentum for ū, d, or W+. Together with overall internal mo-

mentum conservation (κZ = −
∑

i κi), this implies that κ2Z = 0, which implies that the Z0

must be massless.

For the amplitudes considered in this paper, however, with (up to) three massive par-

ticles, and the remaining (massless) particles flavor-preserving, internal momentum con-

servation at each vertex involving a massless (κ = 0) flavor-conserving particle holds auto-

matically, and internal momentum conservation at the vertex involving the three massive

particles, κ1 + κ2 + κn = 0, is easily satisfied for appropriate choices of κi.

1We will use a mostly-minus metric for Ka and ka, but an all-plus metric for the internal components κa.
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4 Double-partial amplitudes

In this section, we show that the propagator matrix (2.6) for an amplitude with up to three

massive particles can be written as a sum over the solutions of the scattering equations (3.1).

First we recall from section 3 that kinematically we can regard the scattering of n

particles (up to three of them massive and the rest flavor-preserving) in d dimensions as

the scattering of nmassless particles in d+M dimensions, with the same propagator matrix.

Next, recall that Cachazo, He, and Yuan [2] demonstrated that the entries of the

propagator matrix for massless amplitudes can be interpreted as double-partial amplitudes

of a theory of massless scalar particles transforming in the adjoint of the color group

U(N) × U(Ñ) and presented a compact formula for computing them. First they defined

an n× n matrix Φ({K,σ}) with entries

Φab =
2Ka ·Kb

(σa − σb)2
, a 6= b; Φaa = −

∑

c 6=a

2Ka ·Kc

(σa − σc)2
(4.1)

where Ka are the (d+M)-dimensional momenta of massless particles. When the scattering

equations (3.7) are satisfied, this matrix satisfies
∑n

a=1Φab =
∑n

a=1 σaΦab =
∑n

a=1 σ
2
aΦab =

0, and therefore has rank (n−3). Define the nonsingular matrix Φijkpqr by removing rows i, j,

and k, and columns p, q, and r, and let |Φ|ijkpqr be its signed determinant. The combination

det′Φ({K,σ}) ≡
|Φ|ijkpqr

(σp,qσq,rσr,p)(σi,jσj,kσk,i)
(4.2)

where σa,b ≡ σa − σb, was then shown to be independent of the choices of removed rows

and columns. CHY then demonstrated that the entries of the propagator matrix can be

computed using

m(1γn|1δn) =
∑

{σ}∈solutions

(−1)n−1

det′Φ({K,σ})

1

(σ1,γ(2) · · ·σγ(n−1),nσn,1)(σ1,δ(2) · · ·σδ(n−1),nσn,1)

(4.3)

where the sum is over the (n− 3)! solutions of the scattering equations (3.7).

Now we need to rewrite eq. (4.3) in terms of d-dimensional quantities. Since det′Φ is

independent of the choices of removed rows and columns, we can choose to remove the rows

and columns associated with the massive particles (1, 2, and n). Since the remaining rows

and columns correspond to massless particles (with κa = 0), the numerators in Φ12n
12n are

given by Ka ·Kc = ka · kc with a ∈ {3, · · · , n− 3} and c ∈ {1, · · · , n}, which are precisely

the set of kinematic invariants (2.9). This implies that2

det′Φ({K,σ}) = det′Φ({k, σ}) . (4.4)

provided that the determinant is expressed in terms of the invariants (2.9). Furthermore,

as we saw in section 3, the massless scattering equations in d + M dimensions (3.7) are

2Clearly this would not be the case if four or more of the particles were massive.
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precisely equivalent to the massive scattering equations in d dimensions (3.1), and therefore

have the same solutions. Thus, the propagator matrix for the massive amplitude is given by

m(1γn|1δn) =
∑

{σ}∈solutions

(−1)n−1

det′Φ({k, σ})

1

(σ1,γ(2) · · ·σγ(n−1),nσn,1)(σ1,δ(2) · · ·σδ(n−1),nσn,1)

(4.5)

where the sum is over the solutions of the scattering equations (3.1).

Finally, the expression (4.5) has no explicit dependence on the masses, nor does it have

any implicit dependence on the masses since the solutions {σ} of the scattering equations,

when expressed in terms of the kinematic invariants (2.9), are independent of the masses.

Hence, eq. (4.5) for an amplitude with up to three massive particles is the same as that for

massless amplitudes, as we already saw in section 2.

5 Gauge theory amplitudes

In this section, we demonstrate that various gauge theory amplitudes involving up to three

massive particles can be expressed, like those for massless particles, as a sum over the

(n − 3)! solutions of the scattering equations. Moreover, the expressions for these am-

plitudes, when written in terms of the kinematic invariants (2.9), are independent of the

masses of the particles.

We begin in d+M dimensions with the CHY representation for the tree-level scattering

amplitude of n massless gauge bosons [1, 2]

Agauge = (−1)n−1
∑

{σ}∈solutions

C({σ}) E({E ,K, σ})

det′Φ({K,σ})
. (5.1)

Here Ea and Ka are the (d + M)-dimensional polarizations and momenta of the gauge

bosons, and the sum is over the solutions of the scattering equations (3.7). The first factor

in the numerator is

C({σ}) =
∑

γ∈Sn−2

c1γn

σ1,γ(2) · · ·σγ(n−1),nσn,1
(5.2)

where c1γn was defined in eq. (2.3), and det′Φ was defined in eq. (4.2). It is apparent that

color-kinematic dual numerators n1γn can be used to construct

E({E ,K, σ}) =
∑

δ∈Sn−2

n1δn

σ1,δ(2) · · ·σδ(n−1),nσn,1
(5.3)

so that eq. (4.3) implies that eqs. (5.1) and (2.5) are equivalent. The novelty of the CHY

approach, however, is in providing an alternative definition for E({E ,K, σ}) in terms of the

Pfaffian of a matrix, so that eq. (5.1) yields the gauge theory amplitudes directly without

resort to Feynman diagrams.

One first defines a 2n× 2n matrix

Ψ({E ,K, σ}) =

(

A −CT

C B

)

(5.4)
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where A, B, and C are the n× n submatrices

Aab =















Ka ·Kb

σa − σb
, a 6= b;

0, a = b;

Bab =















Ea · Eb
σa − σb

, a 6= b;

0, a = b;

Cab =























Ea ·Kb

σa − σb
, a 6= b;

−
∑

c 6=a

Ea ·Kc

σa − σc
, a = b.

(5.5)

The matrix Ψ has two null vectors, so to obtain a nonvanishing Pfaffian, it is necessary

to remove two of the first n rows and columns. It was shown in ref. [1] that the resulting

“reduced Pfaffian” is independent (when the scattering equations are satisfied) of the choice

of rows and columns deleted, but for our purposes (in order to make manifest the mass

independence of the result) it will prove advantageous to choose ones corresponding to two

of the massive particles. We therefore define Ψ1,n as the matrix obtained by deleting the

1st and nth rows and columns from Ψ, in which case the CHY prescription is

E({E ,K, σ}) =
(−1)n+1

σ1,n
Pf Ψ1,n({E ,K, σ}) . (5.6)

It was shown in refs. [1, 32] that, with this definition, eq. (5.1) computes the amplitudes

for massless gauge bosons in (d+M) dimensions.

Amplitudes for massive gauge bosons. We now use dimensional reduction to obtain

the amplitude for massless and (up to three) massive gauge bosons in d dimensions. As in

section 3, we set Ka = (ka|κa), where the massless bosons (a = 3, · · · , n− 1) have κa = 0.

We restrict all of the (d + M)-dimensional polarization vectors Ea to the d-dimensional

subspace: Ea = (ǫa|0, 0, · · · ). All of the (d+M)-dimensional dot products in the matrices

B and C reduce to d-dimensional dot products, Ea · Eb = ǫa · ǫb and Ea ·Kb = ǫa ·kb, whereas

those in A become Ka ·Kb = ka · kb − κa · κb. Every matrix element Aab that appears in

Ψ1,n (from which the 1st and nth rows and columns of Ψ have been eliminated) has either

κa = 0 or κb = 0, so Ka ·Kb = ka ·kb, which belongs to the set of kinematic invariants (2.9).

Thus, eq. (5.6) becomes

E({E ,K, σ}) =
(−1)n+1

σ1,n
Pf Ψ1,n({ǫ, k, σ}) . (5.7)

so the d-dimensional amplitude for n gauge bosons, up to three of which may be massive, is

A =
∑

{σ}∈solutions

C({σ})

det′Φ({k, σ})

Pf Ψ1,n({ǫ, k, σ})

σ1,n
. (5.8)

where {σ} are solutions of the scattering equations (3.1). We showed in section 3 that these

solutions, when expressed in terms of the invariants (2.9), are independent of the masses,

and in section 4 that det′Φ is also independent of the masses. Hence, we conclude that

the scattering amplitude (5.8) for n gauge bosons, up to three of which may be massive,

is identical to that for n massless gauge bosons, provided it is expressed in terms of the

invariants (2.9).

– 9 –



J
H
E
P
0
5
(
2
0
1
5
)
0
5
0

Let us illustrate this explicitly for the four-gauge-boson amplitude, with m3 = 0. We

use SL(2,C) invariance to set σ1 = 0, σ2 = 1, and σ4 → ∞, then evaluate the various

components of eq. (5.8) on the single solution σ3 = −k1 · k3/k3 · k4 of the n = 4 scattering

equations. Taking σ4 large but finite, we obtain

det′Φ({k, σ}) −→
2(k3 · k4)

3

σ4
4 k1 · k3 k2 · k3

(5.9)

C({σ}) −→ −
(k3 · k4)

2

σ2
4 k2 · k3

[

c1234

k3 · k4
+

c1324

k1 · k3

]

(5.10)

Pf Ψ1,4({ǫ, k, σ}) −→
k3 · k4

σ4 k1 · k3 k2 · k3
K (5.11)

where c1234 = fa1a2bfba3a4 and c1324 = fa1a3bfba2a4 , with fabc the three-gauge-boson ver-

tex, and K is the totally permutation-symmetric expression that appears in the scattering

amplitude for four open strings (cf. eq. (7.4.42) of ref. [57])

K = −
[

(k1 · k3 k2 · k3) ǫ1 · ǫ2 ǫ3 · ǫ4

+(k2 · k3 k3 · k4) ǫ1 · ǫ3 ǫ2 · ǫ4

+(k1 · k3 k3 · k4) ǫ1 · ǫ4 ǫ2 · ǫ3

+(k1 · k3 ǫ1 · k4 ǫ2 · k3 + k2 · k3 ǫ1 · k3 ǫ2 · k4) ǫ3 · ǫ4

+(k2 · k3 ǫ1 · k2 ǫ3 · k4 + k3 · k4 ǫ1 · k4 ǫ3 · k2) ǫ2 · ǫ4

+(k1 · k3 ǫ1 · k2 ǫ4 · k3 + k3 · k4 ǫ1 · k3 ǫ4 · k2) ǫ2 · ǫ3

+(k1 · k3 ǫ2 · k1 ǫ3 · k4 + k3 · k4 ǫ2 · k4 ǫ3 · k1) ǫ1 · ǫ4

+(k2 · k3 ǫ2 · k1 ǫ4 · k3 + k3 · k4 ǫ2 · k3 ǫ4 · k1) ǫ1 · ǫ3

+(k1 · k3 ǫ3 · k2 ǫ4 · k1 + k2 · k3 ǫ3 · k1 ǫ4 · k2) ǫ1 · ǫ2

]

. (5.12)

Assembling the pieces, and taking the limit σ4 → ∞, we obtain

Agggg =
1

2k2 · k3

[

c1234

k3 · k4
+

c1324

k1 · k3

]

K, when m3 = 0 . (5.13)

This expression exhibits the expected factorization into color-dependent and polarization-

dependent factors [5, 6].

Consider two amplitudes involving massive gauge bosons: Wγ → Wγ and

Wγ → WZ0. In each case we have c1234 = c1324, so that eq. (5.13) reduces to

AWγγW ∝
e2

k1 · k3 k3 · k4
K, AWZ0γW ∝

e2 cot θW
k1 · k3 k3 · k4

K (5.14)

both of which can be verified by a Feynman diagram calculation.3 A Feynman diagram

calculation also shows that eq. (5.13) is not valid for WZ0 → WZ0, which is not surprising

since this amplitude violates the condition m3 = 0.

3Holstein [22] calculated the Compton scattering amplitude from a massive spin-one particle with an

arbitrary value g for its magnetic moment. Our result (5.14) agrees with his when g = 2, the standard

model magnetic moment for the W boson.
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Amplitudes for two adjoint scalars and n− 2 gauge bosons. Next we turn to the

amplitude for two adjoint scalars (with masses m1 and mn) and n − 2 gauge bosons, one

of which (m2) may be massive. This amplitude may be obtained by dimensional reduction

of eq. (5.1) with E1 = En = (0|1, 0, · · · ) and Ea = (ǫa|0, 0, · · · ) for a = 2, · · · , n − 1, as

was done in ref. [25]. In that case, where all the particles were massless, Ψ became block

diagonal, but the situation here is slightly more complicated because Ka = (ka|κa) with

κa 6= 0 for a = 1, 2, and n.

We can evaluate the Pfaffian of a 2m× 2m matrix Z by using the relation

Pf Z =
2m
∑

p=1

(−1)p+1zp,2mPf Zp,2m (5.15)

where zpq is a matrix element of Z, and we define Zpq as the matrix obtained from Z

by omitting the pth and qth rows and columns. Observe that only four entries in the

(2n)th column of Ψ are non-zero: ψ1,2n, ψ2,2n, ψn,2n, and ψn+1,2n. Two of these, ψ1,2n and

ψn,2n, have already been omitted from Ψ1,n, leaving only two terms in the sum (5.15) for

Z = Ψ1,n({E ,K, σ}). Next observe that only four entries in the (n+ 1)th column of Ψ are

non-zero: ψ1,n+1, ψ2,n+1, ψn,n+1, and ψ2n,n+1. All four of these have been omitted from

Ψ1,2,n,2n, and the Pfaffian of a matrix with an entire column of zeros vanishes. Thus, only

one term in the sum (5.15) survives, namely (using E1 · En = −1)

Pf Ψ1,n({E ,K, σ}) = (−1)nψn+1,2nPf Ψ1,n,n+1,2n =
(−1)n+1

σ1,n
Pf Ψ1,n,n+1,2n({ǫ, k, σ})

(5.16)

and therefore eq. (5.6) becomes

E({E ,K, σ}) =
1

σ2
1,n

Pf Ψ1,n,n+1,2n({ǫ, k, σ}) (5.17)

where Ψ1,n,n+1,2n denotes the matrix obtained from Ψ by removing the 1st, nth, (n+ 1)st

and (2n)th rows and columns.

Using eq. (5.17) in eq. (5.1), we obtain the d-dimensional amplitude for two massive

adjoint scalars and n− 2 gauge bosons, one of which may be massive:

A = (−1)n−1
∑

{σ}∈solutions

C({σ})

det′Φ({k, σ})

Pf Ψ1,n,n+1,2n({ǫ, k, σ})

σ2
1,n

. (5.18)

For the same reasons as before, this amplitude is independent of the masses m1, m2, and

mn when written in terms of the invariants (2.9).

Amplitudes for two fundamental scalars and n − 2 gauge bosons. The scalars

in the amplitude (5.18) transform in the adjoint representation. The amplitude for scalars

in the fundamental representation is essentially the same except that we replace c1γn in

eq. (5.2) with [50]

t1γn = (T aγ(2)T aγ(3) · · ·T aγ(n−1))i1
in

(5.19)
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where T a denote generators in the fundamental representation. In this way, we recover the

results of ref. [50] for amplitudes with two massive scalars in the fundamental representation

and n− 2 massless gauge bosons.4

Again, we illustrate our result for the four-point amplitude with two fundamental

scalars and two gauge bosons. On the single solution of the n = 4 scattering equations, we

obtain

Pf Ψ1,4,5,8({ǫ, k, σ}) −→
k3 · k4

k1 · k3 k2 · k3
L (5.20)

where

L = (k1 · k3 k3 · k4) ǫ2 · ǫ3 + k1 · k3 ǫ2 · k1 ǫ3 · k4 + k3 · k4 ǫ2 · k4 ǫ3 · k1 . (5.21)

Putting this together with eqs. (5.9) and (5.10), we obtain the amplitude

Aψggψ̄ =
1

2k2 · k3

[

t1234

k3 · k4
+

t1324

k1 · k3

]

L, when m3 = 0 . (5.22)

Again we see the expected factorization into a product of a color factor and a polarization-

dependent factor [5, 6], valid provided one of the gauge bosons is massless.

Consider an amplitude involving a photon, W , and a pair of scalar quarks ψd and ψū.

In this case, each color factor t1···4 is proportional to the ψdWψū coupling times the charge

of the quark interacting with the photon, giving

AψdWγψū
∝

1

k2 · k3

[

Qu

k3 · k4
+

Qd

k1 · k3

]

L (5.23)

agreeing with a Feynman diagram evaluation [10]. Note that this amplitude vanishes when

k1 · k3
k3 · k4

= −
Qd

Qu
=

1

2
(5.24)

independent of the polarizations. This implies that the amplitude for ψdψū → W−γ,

vanishes when cos θ = −1/3 (for massless quarks), where θ is the angle between ψd and

W− in the center-of-mass frame. Such “radiation zeros” were first found in calculations

of dū → W−γ processes [7–9], leading to the discovery of four-point factorization [5, 6],

which was the forerunner of the BCJ relations [4]. Radiation zeros were also found to be

present in higher-point amplitudes under certain conditions [11, 12].

6 Gravity amplitudes

In this section, we demonstrate that various gravitational amplitudes involving up to three

massive particles can be expressed as a sum over the (n − 3)! solutions of the scattering

equations, and that the expressions for these amplitudes, when written in terms of the

kinematic invariants (2.9), are independent of the masses of the particles.

4The matrix Ψ1,n,n+1,2n is denoted as Ψ in ref. [50] (note the clarification in v2).
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We begin in d +M dimensions with the CHY representation for the tree-level gravi-

tational scattering amplitude [1, 2]

Agrav = (−1)n−1
∑

{σ}∈solutions

E({E ,K, σ}) E({Ẽ ,K, σ})

det′Φ({K,σ})
(6.1)

for particles with momenta Ka and whose polarization state is described by a tensor Eµνa =

Eµa Ẽνa , which includes the graviton, B-field, and dilaton. The factors det′Φ({K,σ}) and

E({E ,K, σ}) were defined in eqs. (4.2) and (5.6), and the sum is over the solutions of the

scattering equations (3.7).

In ref. [25], dimensional reduction from d + M to d dimensions was used to obtain

mixed amplitudes in Einstein-Maxwell theory with gauge group U(1)M . We will use the

same approach to obtain various mixed amplitudes involving massive particles.

Amplitudes for two gauge bosons and n − 2 gravitons. To obtain amplitudes for

two (possibly massive) gauge bosons and n−2 gravitons, we set Ka = (ka|κa), with κa = 0

for the gravitons (a = 2, · · · , n−1). We choose the (d+M)-dimensional polarization vectors

to be E1 = En = (0|1, 0, · · · ) and Ea = (ǫa|0, 0, · · · ) for a = 2, · · · , n−1, so that E({E ,K, σ})

is given by eq. (5.17), while we set Ẽa = (ǫ̃a|0, 0, · · · ) for all a so that E({Ẽ ,K, σ}) is given

by eq. (5.7). This yields the amplitude in d dimensions

A =
∑

{σ}∈solutions

Pf Ψ1,n({ǫ, k, σ}) Pf Ψ1,n,n+1,2n({ǫ̃, k, σ})

det′Φ({k, σ}) σ3
1,n

. (6.2)

Although dimensional reduction gives the amplitude for two photons and n− 2 gravitons,

it remains valid for any gauge theory since no non-abelian vertices are involved. For the

same reasons described previously, this amplitude has no dependence (when expressed in

terms of the invariants (2.9)) on the mass of the gauge bosons.

We illustrate eq. (6.2) for the case of the four-point amplitude gh → gh, describing the

scattering of gravitons (h) from gauge bosons (g). Assembling eqs. (5.9), (5.11), and (5.20),

we obtain

Aghhg = −
1

2k1 · k3 k2 · k3 k3 · k4
L K̃ (6.3)

where L was defined in eq. (5.21) and K̃ indicates that ǫ is replaced by ǫ̃ in eq. (5.12).

Equation (6.3) agrees with the result of a Feynman diagram calculation [20] in which the

factorization into L and K̃ was noted. As emphasized in ref. [22], factorization relates

graviton scattering from W ’s to Compton scattering from W ’s, but only when the W

magnetic moment is given by its standard model value g = 2.

Amplitudes for two scalars and n − 2 gravitons. To obtain amplitudes for two

massive scalars and n − 2 gravitons, we choose Ka and Ea to be the same as above, but

now set Ẽ1 = Ẽn = (0|1, 0, · · · ) and Ẽa = (ǫ̃a|0, 0, · · · ) for a = 2, · · · , n−1. Hence both both

E({E ,K, σ}) and E({Ẽ ,K, σ}) are given by eq. (5.17), and the d-dimensional amplitude

becomes

A = (−1)n−1
∑

{σ}∈solutions

Pf Ψ1,n,n+1,2n({ǫ, k, σ}) Pf Ψ1,n,n+1,2n({ǫ̃, k, σ})

det′Φ({k, σ}) σ4
1,n

(6.4)
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thus recovering the expression obtained in ref. [50]. As we have seen before, the amplitude

is independent of the scalar mass, when expressed in terms of the invariants (2.9).

We illustrate eq. (6.4) for the case of the scattering ψh → ψh of gravitons from massive

scalars [58]. Assembling eqs. (5.9) and (5.20), we obtain

Aψhhψ̄ = −
1

2k1 · k3 k2 · k3 k3 · k4
L L̃ (6.5)

where L̃ indicates that ǫ is replaced by ǫ̃ in eq. (5.21). The factorization of this amplitude

was first noted by the authors of ref. [20].

Amplitudes for three gauge bosons and n− 3 gravitons. Since the amplitude for

three (possibly) massive gauge bosons and n − 3 gravitons cannot be obtained directly

from the dimensional reduction of eq. (6.1) to an Einstein-Maxwell theory (since the triple

photon vertex vanishes), we start instead with the mixed amplitude for three massless

gauge bosons and n− 3 gravitons in d+M dimensions [24]

A = (−1)n−1
∑

{σ}∈solutions

C(σ1, σ2, σn) E(E3, · · · , En−1, {K,σ}) E({Ẽ ,K, σ})

det′Φ({K,σ})
(6.6)

where

C(σ1, σ2, σn)=
Tr(T a1T a2T an)

σ12σ2nσn1
, E(E3, · · · , En−1, {K,σ})=Pf Ψ1,2,n,n+1,n+2,2n({E ,K, σ})

(6.7)

and Ψ1,2,n,n+1,n+2,2n denotes Ψ with the six rows and columns indicated removed. Equa-

tion (6.6) can be obtained from a pure graviton amplitude using a “squeezing” process [25].

To obtain the amplitude for three massive gauge bosons and n − 3 gravitons in d di-

mensions, we dimensionally reduce eq. (6.6) by taking Ea = (ǫa|0, 0, · · · ), Ẽa = (ǫ̃a|0, 0, · · · ),

and Ka = (ka|κa) for all a, with κa = 0 for a = 3, · · · , n − 1. Since Ka · Kb = ka · kb,

Ka · Eb = ka · ǫb, and Ea · Eb = ǫa · ǫb for all entries of the matrices Ψ1,2,n,n+1,n+2,2n and Ψ1,n,

eq. (6.6) reduces to

A =
∑

{σ}∈solutions

C(σ1, σ2, σn) Pf Ψ1,2,n,n+1,n+2,2n({ǫ, k, σ}) Pf Ψ1,n({ǫ̃, k, σ})

det′Φ({k, σ}) σ1,n
(6.8)

which is independent of the gauge boson masses (when expressed in terms of invari-

ants (2.9)).

To illustrate eq. (6.8) for the four-point function, we evaluate its components on the

single solution of the n = 4 scattering equations to obtain

C(σ1, σ2, σ4) −→
Tr(T a1T a2T a4)

σ2
4

, (6.9)

Pf Ψ1,2,4,5,6,8({ǫ, k, σ}) =
∑

c 6=3

ǫ3 · kc
σ3,c

−→
k3 · k4 (k1 · k3 ǫ3 · k2 − k2 · k3 ǫ3 · k1)

k1 · k3 k2 · k3

together with eqs. (5.9) and (5.11). Assembling the pieces and taking σ4 → ∞, we obtain

Agghg =
(k1 · k3 ǫ3 · k2 − k2 · k3 ǫ3 · k1)

2k1 · k3 k2 · k3 k3 · k4
Tr(T a1T a2T a4) K̃ (6.10)
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where all three gauge bosons can be massive. This result agrees with Feynman diagram

computations of graviton photoproduction Wγ → Wh from massive vector bosons [20, 23].

Equation (6.10) implies that WZ0 → Wh should also factorize.

Amplitudes for two scalars, one gauge boson, and n − 3 gravitons. Finally, to

obtain the amplitude for two massless scalars, a (possibly) massive gauge boson, and n− 3

gravitons in d dimensions, we choose Ka and Ea to be the same as in the previous example,

but now set Ẽ1 = Ẽn = (0|1, 0, · · · ) and Ẽa = (ǫ̃a|0, 0, · · · ) for a = 2, · · · , n − 1. Then

eq. (6.6) reduces to

A=(−1)n−1
∑

{σ}∈solutions

C(σ1, σ2, σn)Pf Ψ1,2,n,n+1,n+2,2n({ǫ, k, σ}) Pf Ψ1,n,n+1,2n({ǫ̃, k, σ})

det′Φ({k, σ}) σ2
1,n

(6.11)

once again independent of the masses (when expressed in terms of invariants (2.9)). For

the four-point amplitude, this yields

Aψghψ̄ =
(k1 · k3 ǫ3 · k2 − k2 · k3 ǫ3 · k1)

2k1 · k3 k2 · k3 k3 · k4
Tr(T a1T a2T a4) L̃ (6.12)

which agrees with Feynman diagram computations of graviton photoproduction ψγ → ψh

from scalars [20, 21]. Equation (6.12) implies that ψZ0 → ψh and ψdW
+ → ψuh should

also factorize.

7 Conclusions

In this paper we have derived CHY representations for a wide class of tree-level gauge and

gravitational amplitudes containing up to three massive particles. These mixed amplitudes

involve gravitons, massive and massless gauge bosons, and adjoint or fundamental massive

scalar particles. All of these amplitudes can be obtained through the dimensional reduc-

tion of massless gauge and gravitational amplitudes in a higher dimension. Further, we

demonstrated that amplitudes containing up to three massive particles, when written in

terms of the kinematic invariants (2.9), are in fact independent of the masses, and so have

the same form as purely massless amplitudes.

It is not so straightforward to obtain CHY representations for gauge and gravitational

amplitudes with four or more massive particles. As explained in section 3, such amplitudes

do not generically result from the dimensional reduction of massless amplitudes because of

the difficulty of satisfying momentum conservation in the internal dimensions. Moreover,

the propagator matrix in this case generally has rank greater than (n− 3)! and so cannot

be represented as a sum over (n− 3)! solutions.

On the other hand, there is good reason to suspect the existence of CHY representa-

tions involving fermions, since the factorization of four-point gauge amplitudes also holds

for amplitudes containing spin-one-half particles [5, 6] and gravitational scattering from

spin-one-half particles [20–23] has also been shown to factorize. For progress in this area,

see refs. [33, 40, 53].
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