86 research outputs found
Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: The role of primary infection
Fourteen patients who developed B cell lymphomas or lymphoproliferative lesions after kidney, liver, heart, or heart-lung transplantation in Pittsburgh during 1981-1983 had active infection with Epstein-Barr virus (EBV)of the primary (six patients), reactivated (seven patients), or chronic (one patient) type. In transplant patients without tumors, the incidence of EBV infection was 30% (39 of 128). Only three of these patients had primary infections. Thus the frequency of active infection was significantly higher in patients with tumors, and patients with primary infections were at greater risk of developing tumors. Five of 13 tumors tested contained EBV nuclear antigen (EBNA) and nine of 11 contained EBV genomes detected by DNA-DNA hybridization with BamHI K, BamHI W, or EcoRI B cloned probes. All EBNA-positive tumors, except one, were also positive by hybridization. Only one tumor was negative for both EBNA and EBV DNA. These data suggest that EBV plays an etiologic role in the development of these lesions. © 1985 by The University of Chicago
On the Origin and Trigger of the Notothenioid Adaptive Radiation
Adaptive radiation is usually triggered by ecological opportunity, arising
through (i) the colonization of a new habitat by its
progenitor; (ii) the extinction of competitors; or
(iii) the emergence of an evolutionary key innovation in
the ancestral lineage. Support for the key innovation hypothesis is scarce,
however, even in textbook examples of adaptive radiation. Antifreeze
glycoproteins (AFGPs) have been proposed as putative key innovation for the
adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica.
A crucial prerequisite for this assumption is the concurrence of the
notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we
use a fossil-calibrated multi-marker phylogeny of nothothenioid and related
acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All
time-constraints are cross-validated to assess their reliability resulting in
six powerful calibration points. We find that the notothenioid radiation began
near the Oligocene-Miocene transition, which coincides with the increasing
presence of Antarctic sea ice. Divergence dates of notothenioids are thus
consistent with the key innovation hypothesis of AFGP. Early notothenioid
divergences are furthermore congruent with vicariant speciation and the breakup
of Gondwana
Adhesion of perfume-filled microcapsules to model fabric surfaces
The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force–displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation
A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans
One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth
Lack of EGF receptor contributes to drug sensitivity of human germline cells
Germline mutations have been associated with generation of various types of tumour. In this study, we investigated genetic alteration of germline tumours that affect the drug sensitivity of cells. Although all germline tumour cells we tested were hypersensitive to DNA-damaging drugs, no significant alteration was observed in their DNA repair activity or the expression of DNA repair proteins. In contrast, germline tumours expressed very low level of epidermal growth factor receptor (EGFR) compared to drug-resistant ovarian cancer cells. An immunohistochemical analysis indicated that most of the primary germline tumours we tested expressed very low level of EGFR. In accordance with this, overexpression of EGFR in germline tumour cells showed an increase in drug resistance, suggesting that a lack of EGFR, at least in part, contributes to the drug sensitivity of germline tumours
Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes
Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
A gene expression fingerprint of C. elegans embryonic motor neurons
BACKGROUND: Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. RESULTS: Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which ~1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. CONCLUSION: We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system
Perspectives on ENCODE
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020- 2449-8.© 2020, The Author(s). The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.NIH grants: U01HG007019, U01HG007033, U01HG007036, U01HG007037, U41HG006992, U41HG006993, U41HG006994, U41HG006995, U41HG006996, U41HG006997, U41HG006998, U41HG006999, U41HG007000, U41HG007001, U41HG007002, U41HG007003, U41HG007234, U54HG006991, U54HG006997, U54HG006998, U54HG007004, U54HG007005, U54HG007010 and UM1HG009442
- …