2,068 research outputs found

    Inhibitory mechanism of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol synthesis with Klebsiella pneumoniae

    Get PDF
    3-Hydroxypropionaldehyde accumulation may cause the cessation of 1,3-propanediol sustained production with glycerol by Klebsiella pneumoniae. The impeller tip speed shift from higher to lower speed at glycerol excess or the pulsed glycerol feeding could lead to an abrupt increase of the 3- hydroxypropionaldehyde concentration (up to 10 mmol/l) in 10 min. The intracellular consequence of the 3-hydroxypropionaldehyde accumulation has not yet been elucidated. The rapid accumulation of 3- hydroxypropionaldehyde relying on the impeller tip speed shift was employed to investigate the influences of 3-hydroxypropionaldehyde to the activities of nine key enzymes related to glycerol metabolism, CO2 and O2 levels in off-gas, cell growth and 1,3-propanediol synthesis. Compared with that at 1.19 mmol/l 3-hydroxypropionaldehyde in broth, the residual enzymatic activities of the nine key enzymes ranged from 9.44 to 74.68% in the cultures at 7.5 mmol/l 3-hydroxypropionaldehyde in broth. The inhibitions of cell growth and the 1,3-propanediol synthesis were unnoticeable at the low level of 3- hydroxypropionaldehyde. By contrast, the CO2 and O2 levels changes in off-gas response to the 3- hydroxypropionaldehyde accumulation were less than 15 min. These results suggest that 3- hydroxypropionaldehyde inhibited the growth and metabolism of K. pneumoniae in a more complicated manner.Keywords: Fermentation, glycerol, 3-hydroxypropionaldehyde, Klebsiella pneumoniae, 1,3-propanediol

    Time-Resolved Imaging Reveals Heterogeneous Landscapes of Nanomolar Ca(2+) in Neurons and Astroglia

    Get PDF
    Maintaining low intracellular calcium is essential to the functioning of brain cells, yet the phenomenology and mechanisms involved remain an enigma. We have advanced a two-photon excitation time-resolved imaging technique, which exploits high sensitivity of the OGB-1 fluorescence lifetime to nanomolar Ca(2+) concentration ([Ca(2+)]) and enables a high data acquisition rate in situ. The [Ca(2+)] readout is not affected by dye concentration, light scattering, photobleaching, micro-viscosity, temperature, or the main known concomitants of cellular activity. In quiescent tissue, standard whole-cell configuration has little effect on resting [Ca(2+)] inside neuronal dendrites or inside astroglia dye-filled via gap junctions. Mapping basal [Ca(2+)] in neurons and astrocytes with submicron resolution unveils heterogeneous concentration landscapes that depend on age and preceding activity. The rich information content represented by such landscapes in acute slices and in vivo promises to unveil the hitherto unexplored, potentially fundamental aspects of brain cell physiology. VIDEO ABSTRACT

    Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue

    Get PDF
    Brain function relies in large part on Ca2+-dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca2+ −sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca2+ dynamics and transmitter release in an intact brain at the level of individual synapses

    Multiplex imaging relates quantal glutamate release to presynaptic Ca2+ homeostasis at multiple synapses in situ

    Get PDF
    Information processing by brain circuits depends on Ca2+-dependent, stochastic release of the excitatory neurotransmitter glutamate. Whilst optical glutamate sensors have enabled detection of synaptic discharges, understanding presynaptic machinery requires simultaneous readout of glutamate release and nanomolar presynaptic Ca2+ in situ. Here, we find that the fluorescence lifetime of the red-shifted Ca2+ indicator Cal-590 is Ca2+-sensitive in the nanomolar range, and employ it in combination with green glutamate sensors to relate quantal neurotransmission to presynaptic Ca2+ kinetics. Multiplexed imaging of individual and multiple synapses in identified axonal circuits reveals that glutamate release efficacy, but not its short-term plasticity, varies with time-dependent fluctuations in presynaptic resting Ca2+ or spike-evoked Ca2+ entry. Within individual presynaptic boutons, we find no nanoscopic co-localisation of evoked presynaptic Ca2+ entry with the prevalent glutamate release site, suggesting loose coupling between the two. The approach enables a better understanding of release machinery at central synapses

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change

    Non-syndromic Hearing Impairment in a Hungarian Family with the m.7510T>C Mutation of Mitochondrial tRNA^^Ser(UCN)^^^ and Review of Published Cases

    Get PDF
    The m.7510T>C mitochondrial DNA (mtDNA) mutation is a tRNA(Ser(UCN)) alteration leading to matrilineal isolated hearing impairment. The current paper reviews the available reports on the m.7510T>C mtDNA mutation, with special attention to phenotypic variations and haplogroup background. A Hungarian family, the fourth family reported in the literature, is presented, in which analysis of three generations with bilateral isolated hearing loss revealed the m.7510T>C tRNA(Ser(UCN)) mutation in homoplasmic form in the affected members. Haplogroup analysis verified an unnamed subgroup of mitochondrial haplogroup H. Previously reported Spanish and North American Caucasian families belong to different subgroups of haplogroup H. Analyzing our biobank of Hungarian patients with sensorineural hearing loss, we did not detect this mutation in any other patient, nor was it found in Caucasian haplogroup H control samples. Comparing the cases reported so far, there is interfamilial variablity in the age of onset, accompanying symptoms, and haplogroup background. Our case adds further genetic evidence for the pathogenicity of the m.7510T>C mutation and underlines the need to include full mtDNA sequencing in the screening for unexplained hearing loss

    Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    Get PDF
    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour

    Short- and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    Get PDF
    BACKGROUND: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. OBJECTIVES: We have therefore compared the impact of short- (24 h) and long-term (7 days) GC administration on insulin signalling in differentiated human adipocytes in the presence of low or high concentrations of insulin. RESULTS: Both short- (24 h) and long-term (7 days) treatment of chub-s7 cells with dexamethasone (Dex) (0.5 μM) increased insulin-stimulated pTyr612IRS1 and pSer473akt/PKB, consistent with insulin sensitization. Chronic high-dose insulin treatment induced insulin resistance in chub-s7 cells. However, treatment with both high-dose insulin and Dex in combination still caused insulin sensitization. CONCLUSIONS: In this human subcutaneous adipocyte cell line, prolonged GC exposure, even in the presence of high insulin concentrations, is able to cause insulin sensitization. We suggest that this is an important mechanism driving adipogenesis and contributes to the obese phenotype of patients with Cushing's syndrome

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia
    • …
    corecore