9 research outputs found

    NANOG Reporter Cell Lines Generated by Gene Targeting in Human Embryonic Stem Cells

    Get PDF
    Background: Pluripotency and self-renewal of human embryonic stem cells (hESCs) is mediated by a complex interplay between extra- and intracellular signaling pathways, which regulate the expression of pluripotency-specific transcription factors. The homeodomain transcription factor NANOG plays a central role in maintaining hESC pluripotency, but the precise role and regulation of NANOG are not well defined. Methodology/Principal Findings: To facilitate the study of NANOG expression and regulation in viable hESC cultures, we generated fluorescent NANOG reporter cell lines by gene targeting in hESCs. In these reporter lines, the fluorescent reporter gene was co-expressed with endogenous NANOG and responded to experimental induction or repression of the NANOG promoter with appropriate changes in expression levels. Furthermore, NANOG reporter lines facilitated the separation of hESC populations based on NANOG expression levels and their subsequent characterization. Gene expression arrays on isolated hESC subpopulations revealed genes with differential expression in NANOG high and NANOG low hESCs, providing candidates for NANOG downstream targets hESCs. Conclusion/Significance: The newly derived NANOG reporter hESC lines present novel tools to visualize NANOG expression in viable hESCs. In future applications, these reporter lines can be used to elucidate the function and regulation of NANO

    Comparison of Bone and Renal Effects In HIV-infected Adults Switching to Abacavir or Tenofovir Based Therapy in a Randomized Trial

    Get PDF
    Our objective was to compare the bone and renal effects among HIV-infected patients randomized to abacavir or tenofovir-based combination anti-retroviral therapy.In an open-label randomized trial, HIV-infected patients were randomized to switch from zidovudine/lamivudine (AZT/3TC) to abacavir/lamivudine (ABC/3TC) or tenofovir/emtricitabine (TDF/FTC). We measured bone mass density (BMD) and bone turnover biomarkers (osteocalcin, osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), alkaline phosphatase, type I collagen cross-linked C-telopeptide (CTx), and osteoprotegerin). We assessed renal function by estimated creatinine clearance, plasma cystatin C, and urinary levels of creatinine, albumin, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL). The changes from baseline in BMD and renal and bone biomarkers were compared across study arms.Of 40 included patients, 35 completed 48 weeks of randomized therapy and follow up. BMD was measured in 33, 26, and 27 patients at baseline, week 24, and week 48, respectively. In TDF/FTC-treated patients we observed significant reductions from baseline in hip and lumbar spine BMD at week 24 (-1.8% and -2.5%) and week 48 (-2.1% and -2.1%), whereas BMD was stable in patients in the ABC/3TC arm. The changes from baseline in BMD were significantly different between study arms. All bone turnover biomarkers except osteoprotegerin increased in the TDF/FTC arm compared with the ABC/3TC arm, but early changes did not predict subsequent loss of BMD. Renal function parameters were similar between study arms although a small increase in NGAL was detected among TDF-treated patients.Switching to TDF/FTC-based therapy led to decreases in BMD and increases in bone turnover markers compared with ABC/3TC-based treatment. No major difference in renal function was observed.Clinicaltrials.gov NCT00647244

    The Family Chromatiaceae

    No full text
    The Chromatiaceae is a family of the Chromatiales within the Gammaproteobacteria and closely related to the Ectothiorhodospiraceae. Representatives of both families are referred to as phototrophic purple sulfur bacteria and typically grow under anoxic conditions in the light using sulfide as photosynthetic electron donor, which is oxidized to sulfate via intermediate accumulation of globules of elemental sulfur. In Chromatiaceae species, the sulfur globules appear inside the cells; in Ectothiorhodospiraceae, they are formed outside the cells and appear in the medium. Characteristic properties of these bacteria are the synthesis of photosynthetic pigments, bacteriochlorophyll a or b, and various types of carotenoids and the formation of a photosynthetic apparatus with reaction center and antenna complexes localized within internal membrane systems. Phototrophic growth, photosynthetic pigment synthesis, and formation of the photosynthetic apparatus and internal membranes are strictly regulated by oxygen and light and become derepressed at low oxygen tensions. Typically, Chromatiaceae are enabled to the photolithoautotrophic mode of growth. A number of species also can grow photoheterotrophically using a limited number of simple organic molecules. Some species also can grow under chemotrophic conditions in the dark, either autotrophically or heterotrophically using oxygen as terminal electron acceptor in respiratory processe

    Störungen des Kaliumstoffwechsels und ihre klinische Bedeutung

    No full text
    corecore