59 research outputs found

    Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics

    Get PDF
    "Published online: 24 October 2017"PURPOSE: Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD). METHODS: Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task. RESULTS: The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001). CONCLUSIONS: Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively. LEVEL OF EVIDENCE: Level II, prospective cohort study.The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and Traumatology (HAOST-EEXOT)info:eu-repo/semantics/publishedVersio

    Reverse Effect of Mammalian Hypocalcemic Cortisol in Fish: Cortisol Stimulates Ca2+ Uptake via Glucocorticoid Receptor-Mediated Vitamin D3 Metabolism

    Get PDF
    Cortisol was reported to downregulate body-fluid Ca2+ levels in mammals but was proposed to show hypercalcemic effects in teleostean fish. Fish, unlike terrestrial vertebrates, obtain Ca2+ from the environment mainly via the gills and skin rather than by dietary means, and have to regulate the Ca2+ uptake functions to cope with fluctuating Ca2+ levels in aquatic environments. Cortisol was previously found to regulate Ca2+ uptake in fish; however, the molecular mechanism behind this is largely unclear. Zebrafish were used as a model to explore this issue. Acclimation to low-Ca2+ fresh water stimulated Ca2+ influx and expression of epithelial calcium channel (ecac), 11β-hydroxylase and the glucocorticoid receptor (gr). Exogenous cortisol increased Ca2+ influx and the expressions of ecac and hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), but downregulated 11β-hydroxylase and the gr with no effects on other Ca2+ transporters or the mineralocorticoid receptor (mr). Morpholino knockdown of the GR, but not the MR, was found to impair zebrafish Ca2+ uptake function by inhibiting the ecac expression. To further explore the regulatory mechanism of cortisol in Ca2+ uptake, the involvement of vitamin D3 was analyzed. Cortisol stimulated expressions of vitamin D-25hydroxylase (cyp27a1), cyp27a1 like (cyp27a1l), 1α-OHase (cyp27b1) at 3 dpf through GR, the first time to demonstrate the relationship between cortisol and vitamin D3 in fish. In conclusion, cortisol stimulates ecac expression to enhance Ca2+ uptake functions, and this control pathway is suggested to be mediated by the GR. Lastly, cortisol also could mediate vitamin D3 signaling to stimulate Ca2+ uptake in zebrafish

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    A Case of Hypercalcemia and Overexpression of CYP27B1 in Skeletal Muscle Lesions in a Patient with HIV Infection After Cosmetic Injections with Polymethylmethacrylate (PMMA) for Wasting

    No full text
    Foreign body-induced granuloma is an uncommon yet clinically significant cause of hypercalcemia. The molecular mechanisms are uncertain, although extrarenal calcitriol production has been proposed. We describe severe hypercalcemia associated with increased levels of plasma calcitriol in a patient with HIV and local granulomatous reaction five years after injection of polymethylmethacrylate (PMMA) as dermal filler for cosmetic body sculpting. Extensive evaluation revealed no identifiable cause of increased calcitriol levels. Nuclear imaging was remarkable for diffuse uptake in the subcutaneous tissues of the buttocks. Subsequent muscle biopsy and immunohistochemical staining showed strong local expression of CYP27B1 within histiocytes surrounding globules of PMMA. This case highlights an unfortunate complication of dermal fillers and shows that inflammatory cells can express high levels of CYP27B1 even without frank granulomas. The growing trend of body contour enhancement using injectable fillers should raise suspicion for this cause of hypercalcemia in clinical practice. Patients with HIV who receive this treatment for lipodystrophy or other cosmetic purposes may have increased susceptibility to hypercalcemia in the setting of underlying chronic inflammation. This may be a concern when changing anti-retroviral therapy, since alterations in levels of HIV viremia may initiate or contribute to worsening hypercalcemia

    Diagnosis and treatment of rotatory knee instability

    Get PDF
    BACKGROUND Rotatory knee instability is an abnormal, complex three-dimensional motion that can involve pathology of the anteromedial, anterolateral, posteromedial, and posterolateral ligaments, bony alignment, and menisci. To understand the abnormal joint kinematics in rotatory knee instability, a review of the anatomical structures and their graded role in maintaining rotational stability, the importance of concomitant pathologies, as well as the different components of the knee rotation motion will be presented. MAIN BODY The most common instability pattern, anterolateral rotatory knee instability in an anterior cruciate ligament (ACL)-deficient patient, will be discussed in detail. Although intra-articular ACL reconstruction is the gold standard treatment for ACL injury in physically active patients, in some cases current techniques may fail to restore native knee rotatory stability. The wide range of diagnostic options for rotatory knee instability including manual testing, different imaging modalities, static and dynamic measurement, and navigation is outlined. As numerous techniques of extra-articular tenodesis procedures have been described, performed in conjunction with ACL reconstruction, to restore anterolateral knee rotatory stability, a few of these techniques will be described in detail, and discuss the literature concerning their outcome. CONCLUSION In summary, the essence of reducing anterolateral rotatory knee instability begins and ends with a well-done, anatomic ACL reconstruction, which may be performed with consideration of extra-articular tenodesis in a select group of patients
    • …
    corecore